
secureFIT
–

Mehrfaktor-Authentifizierung und
Autorisierung

Bachelorarbeit
zur Erlangung des akademischen Grades

Bachelor of Science

Vorgelegt von:
Tim Düsterhus

Thema gestellt von:
Dr. Dietmar Lammers

Arbeit betreut durch:
Dr. Dietmar Lammers

Sassenberg, 12. Dezember 2016

Abstract

Diese Arbeit stellt ein Konzept für eine sichere Zugriffsverwaltung in einem
zentral verwalteten Mehrbenutzersystem mit unterschiedlichen Kompetenzen
einzelner Nutzer vor. Dazu werden zwei standardisierte Verfahren zur Mehrfak-
tor-Authentifizierung im Detail untersucht und vorgestellt, wie dadurch der Zu-
griff auf Konten einzelner Nutzer besonders geschützt werden kann. Weiterhin
wird untersucht, wie nach erfolgter Authentifizierung des Nutzers sichergestellt
werden kann, dass jeweils nur berechtigte Nutzer die einzelnen Funktionen des
Systems nutzen können.
Viele Systeme besitzen bereits eine bestehende Einfaktor-Authentifizierung

und sind nicht von Grund auf mit dem Konzept einer Zweifaktor-Authentifizie-
rung entwickelt worden. Daher zeigt diese Arbeit anhand einer beispielhaften
Implementation eines der vorgestellten Verfahren, wie man ein derartiges Zwei-
faktor-System nachträglich in seine bestehende Authentifizierung integrieren
kann, ohne dabei große Änderungen an den bereits erprobten Komponenten
vornehmen zu müssen.

iii

Inhaltsverzeichnis

1. Einleitung 1

2. Zweifaktor-Authentifizierung 3
2.1. Einführung . 3
2.2. Universal Second Factor . 4

2.2.1. Voraussetzungen . 4
2.2.2. Funktionsweise . 5
2.2.3. Analyse des Verfahrens 9
2.2.4. Vergleich mit anderen Smartcard-Verfahren 11

2.3. Time-based One-time Password Algorithm 12
2.3.1. Voraussetzungen . 12
2.3.2. Funktionsweise . 12
2.3.3. Analyse des Verfahrens 15
2.3.4. Vergleich mit anderen Einmalkennwort-Verfahren 17

2.4. Verlust des zweiten Faktors . 18

3. Implementation von Universal Second Factor 21
3.1. Vorstellung des bestehenden Systems 21
3.2. Voraussetzungen schaffen . 22

3.2.1. Sitzungssystem . 22
3.2.2. Datenbanktabellen . 23
3.2.3. OpenSSL . 24

3.3. Kommunikation mit der Smartcard 25
3.3.1. __construct . 26
3.3.2. generateRegisterRequest 26
3.3.3. verifyRegisterResponse 26
3.3.4. generateSignRequest 28
3.3.5. verifySignResponse . 29

3.4. Aktivierung des zweiten Faktors 30

v

Inhaltsverzeichnis

3.5. Überprüfung des zweiten Faktors 31
3.6. Fazit . 32

4. Autorisierung 33
4.1. Keine gesonderte Autorisierung 34
4.2. Rechtelevel . 34
4.3. Vergabe einzelner Rechte an Nutzer 35
4.4. Vergabe von Rechtegruppen an Nutzer 36
4.5. Vergabe mehrerer Rechtegruppen an Nutzer 36
4.6. Wahl der Autorisierungsstrategie 37
4.7. Umsetzung der gewählten Strategie 38

5. Fazit und Ausblick 41
5.1. Zusätzliches Härten des Systems 42
5.2. Verbesserung der Beispielimplementierung 42
5.3. Ausblick . 43

A. Inhalt der beigelegten CD-ROM 45

B. Einrichtung von Universal Second Factor 47

vi

1. Einleitung

Kennwörter und Pins sind aus dem Leben des 21. Jahrhunderts nicht mehr
wegzudenken. Bevor das Internet massentauglich wurde, besaß der Durch-
schnittsbürger seine EC-Karte, SIM-Karte und möglicherweise einige wenige
Kennwörter. Heutzutage benötigt man für jeden Online-Shop, jedes soziale
Netzwerk, für seine E-Mail-Adressen und für die zentrale Nutzerkennung an
der Universität ein gesondertes Benutzerkonto. Und für jedes dieser Konten
sollte man ein getrenntes Kennwort wählen. Die Realität sieht aber anders
aus: Viele Menschen besitzen nur ein einziges Kennwort, das sie für jedes ih-
rer Benutzerkonten verwenden. Sobald ein Angreifer an ebenjenes Kennwort
gelangt ist, stehen ihm alle Türen zum digitalen Leben des Betroffenen offen.
Ein Angreifer kann über eine Vielzahl von Möglichkeiten an Kennwörter

gelangen. Eine simple Möglichkeit ist es einfach zu fragen: Viele Menschen
verraten ihr Passwort für eine einfache Gegenleistung [Uni16]. Eine andere
Möglichkeit sind Sicherheitslücken in der Software von Online-Diensten. So
listet die Internetseite ‚’;--have i been pwned?‘ beispielsweise rund 1,8 Mil-
liarden Nutzerkonten auf 152 unterschiedlichen Portalen, deren private Daten
ungewollt an die Öffentlichkeit gelangt sind [HIBP]. Beide dieser Methoden
stützen sich darauf, dass der Betroffene leichtfertig mit seinen Kennwörtern
umgegangen ist, aber auch technisch versierte Menschen können beispielsweise
durch Schadsoftware von einem Kennwort-Diebstahl betroffen sein.
Es ist also leicht zu sehen, dass nur Kennwörter nicht ausreichen, um wichti-

ge Benutzerkonten zu schützen. Immer mehr Dienste sind sich dieser Tatsache
bewusst und bieten daher einen Zweifaktor-Login an. Wenn ein Nutzer sein
Konto mit dieser Funktion speziell schützt, dann ist das Kennwort allein nicht
mehr ausreichend, um in das Konto und somit an die persönlichen Daten des
Nutzers zu gelangen. Stattdessen muss beispielsweise ein über SMS empfange-
ner Code oder ein Einmalkennwort von einer zuvor erhaltenen Liste eingegeben
werden. Bekannt ist dieses Verfahren vom Online-Banking: Neben der PIN ist

1

1. Einleitung

für jede Transaktion zusätzlich eine neue Transaktionsnummer (TAN) erfor-
derlich.
Die sichere Authentifizierung des Benutzers ist jedoch nicht ausreichend,

um sicherzustellen, dass der Nutzer lediglich auf Informationen und Funktio-
nen Zugriff erhält, die für ihn bestimmt sind. Es muss beispielsweise sicherge-
stellt sein, dass ein Benutzer nicht in der Lage ist Informationen anderer Nut-
zer zu verändern oder einzusehen, ohne dafür speziell von einem Administra-
tor berechtigt worden zu sein. Im Gegensatz zu fehlerhafter Authentifizierung
sind Probleme in der Autorisierung in der Regel schwieriger zu erkennen: Die
erfolgreiche Authentifizierung mit falschem Kennwort wird schnell auffallen,
die versehentliche Veröffentlichung von sensiblen Informationen könnte hinge-
gen an vielen Stellen passieren. Der Dienst GitHub versendete beispielsweise
Benachrichtigungs-E-Mails mit einem privatem Link zum Abbestellen dieser
Benachrichtigungen. Beim Antworten auf diese E-Mails war es möglich, dass
dieser Link in einem Zitat innerhalb der Antwort enthalten war und dadurch
veröffentlicht wurde. Die Problematik wurde so korrigiert, dass der Link in
Zukunft nur noch dem zugeordneten Nutzer zugänglich war [Git16].
Zur Lösung dieses Problems soll in dieser Arbeit ein Konzept zur sicheren

Integration eines Zweifaktor-Logins in ein bestehendes Authentifizierungssys-
tem vorgestellt und zusätzlich auf technischer und administrativer Basis disku-
tiert werden, wie die sicher authentifizierten Nutzer für die unterschiedlichen
Funktionen der Anwendung autorisiert werden können, sodass die Wahrschein-
lichkeit für eine Fehlkonfiguration minimiert wird.
Dazu werden in Kapitel 2 Universal Second Factor (U2F) und Time-based

One-time Password Algorithm (TOTP) als Repräsentanten von Smartcard- be-
ziehungsweise Einmalkennwort-basierten Verfahren im Detail vorgestellt und
anschließend in Kapitel 3 untersucht, wie das U2F-Verfahren in die bestehen-
de Anwendung integriert werden kann. Nachdem die sichere Authentifizierung
gewährleistet wurde, behandelt Kapitel 4 die sichere Autorisierung und stellt
unterschiedliche Autorisierungsstrategien mit ihren jeweiligen Vor- und Nach-
teilen vor. Kapitel 5 schließt mit einem übergreifenden Fazit und gibt zugleich
Anstöße für weitere sicherheitsrelevante Überlegungen, die als Ausgangspunkte
für nachfolgende Untersuchungen herangezogen werden können.

2

2. Zweifaktor-Authentifizierung

2.1. Einführung

Es gibt unterschiedliche Möglichkeiten einen Nutzer eindeutig zu identifizieren,
allen Verfahren ist jedoch gemein, dass sie sich in eine von drei Kategorien
einordnen lassen [Fed, Seite 3]:

Wissen Kennwörter, Private Informationen

Besitz TAN-Liste, Kryptografische Schlüssel, Smartcards

Biometrie Fingerabdruck, Iris-Scan

Die Verfahren einer Kategorie teilen sich dabei aufgrund ihrer inhärenten
Eigenschaften die grundsätzlichen Vor- und Nachteile. So ist es beispielsweise
trivial möglich, Wissen weiterzugeben und damit das Identifizierungsmerkmal
zu duplizieren. Es ist jedoch nahezu unmöglich, die Identifizierung durch ein
Biometrisches Merkmal an eine andere Person weiterzugeben. Dadurch ist die
Authentifizierung durch ein Biometrisches Merkmal, unter der Annahme eines
perfekt arbeitenden Systems - also eines Systems, das keine Fehler bei der
Erkennung des Merkmals macht -, sicherer als die Authentifizierung über ein
Kennwort.
Im Gegenzug ist es nicht möglich, ein Biometrisches Merkmal im Falle ei-

ner Kompromittierung zu verändern, während dies beispielsweise bei einem
Kennwort sehr einfach möglich ist.
Verfahren, die auf dem Besitz von etwas basieren, gehen in vielen Eigen-

schaften einen Mittelweg zwischen Wissen und Biometrie. Eine Smartcard ist
beispielsweise schwierig zu duplizieren, kann aber weiterhin an andere Perso-
nen weitergegeben werden. Der ursprüngliche Besitzer verliert dabei jedoch die
Möglichkeit sich zu authentifizieren. Auch ist die Integration eines derartigen
Systems mit höheren Kosten verbunden als die einfache Abfrage von Wissen,

3

2. Zweifaktor-Authentifizierung

beispielsweise muss für jeden Mitarbeiter eine Smartcard beschafft werden, die
Kosten sind jedoch im Allgemeinen geringer als die für ein sicheres Biometri-
sches System.
Eine sichere Authentifizierung kombiniert also Verfahren aus unterschied-

lichen Kategorien, damit die jeweiligen Nachteile eines Verfahrens durch ein
anderes Verfahren ausgeglichen werden können. Die Authentifizierung auf Ba-
sis von Wissen in Form von Kennwörtern ist die am weitesten verbreitete,
da diese am einfachsten implementiert werden kann. Daher werden nachfol-
gend zwei auf Besitz basierende Verfahren vorgestellt. In Kombination mit
Kennwörtern kommen dann Verfahren aus zwei Kategorien zum Einsatz. Das
U2F-Verfahren (Kapitel 2.2) ist ein Smartcard-basiertes Verfahren, der Benut-
zer authentifiziert sich über den Besitz eines USB-Sticks. Das TOTP-Verfahren
(Kapitel 2.3) basiert auf kryptografischen Schlüsseln; der Benutzer authentifi-
ziert sich über einen auf seinem Smartphone gespeicherten zufällig generierten
Schlüssel, mithilfe dessen Einmalkennwörter generiert werden.

2.2. Universal Second Factor

Universal Second Factor (U2F) ist ein von der FIDO Alliance Ende 2014 veröf-
fentlichtes offenes Verfahren zur Authentifizierung mittels einer Smartcard. Ziel
war es, ein einheitliches und sicheres Verfahren zur Zweifaktor-Authentifizie-
rung zu schaffen [FID14], um die Akzeptanz für Zweifaktor-Authentifizierung
zu erhöhen. Mit dem Webbrowser Google Chrome ist das Verfahren bereits na-
tiv in einem der führenden Webbrowser integriert, für Mozilla Firefox gibt es
ein Add-on [Chm]. Weiterhin gibt es bereits eine Vielzahl kompatibler Smart-
cards unterschiedlicher Hersteller, unter anderem stand bereits einen Monat
nach Veröffentlichung der Spezifikation ein Iris-Scanner zur Verfügung [Eye15].

2.2.1. Voraussetzungen

Auf Seiten des Anbieters ist es notwendig, dass eine Bibliothek mit Unterstüt-
zung für Elliptic Curve Digital Signature Algorithm (ECDSA)-Signaturen auf
der durch das National Institute of Standards and Technology (NIST) standar-
disierten P-256-Kurve [Nat13, Seite 100] zur Validierung der durch die Smart-
card übermittelten Daten zur Verfügung steht (eine verbreitete Bibliothek ist

4

2.2. Universal Second Factor

Abbildung 2.1.: Ablauf der Authentifizierung mit U2F [Yub].

OpenSSL)1. Der Benutzer benötigt eine Smartcard, die das U2F-Verfahren
unterstützt, sowie einen kompatiblen Webbrowser.

2.2.2. Funktionsweise

Die Internetseite des Anbieters kommuniziert über ein vom Webbrowser zur
Verfügung gestelltes JavaScript-API mit der Smartcard. Dieses API stellt zwei
Funktionen zur Verfügung [BBL15, Abschnitt 3.1.1]:

u2f_register_request zum Registrieren der Smartcard im Konto eines Nut-
zers.

u2f_sign_request zum Authentifizieren eines Nutzers.

Beide Funktionen arbeiten nach dem Challenge-Response-Verfahren (Abbil-
dung 2.1). Der Anbieter generiert eine Challenge, welche einen zufälligen Wert
(Nonce) sowie weitere Parameter enthält, und sendet diese über das API an
die Smartcard. Nachdem der Benutzer die Anfrage bestätigt hat (beispiels-
weise durch Drücken einer physischen Taste an der Smartcard), sendet die
Smartcard eine signierte Antwort zurück an den Webbrowser, die von diesem
über das API der Anwendung zur Verfügung gestellt wird.

1Theoretisch ist es möglich diese Validierung selbst zu implementieren. Die Gefahr für
Fehler und dadurch induzierte Sicherheitslücken wäre jedoch immens.

5

2. Zweifaktor-Authentifizierung

Abbildung 2.2.: Aufbau der Antwort auf einen u2f_register_request [BE15,
Abschnitt 4.3].

Bei jeder dieser Anfragen erwartet die Smartcard eine appId. Diese trennt
den Speicher der Smartcard in unterschiedliche Namensräume: Die zuvor re-
gistrierten Daten sind beim Authentifizieren nur dann sicht- und benutzbar,
wenn die appId beider Anfragen übereinstimmt. Der zulässige Inhalt der appId
unterliegt einem komplexen Regelwerk [BH15, Abschnitt 3.1.2], welches sicher-
stellen soll, dass ein bösartiger Dienst nicht in der Lage ist die appId (und somit
die Schlüssel) eines anderen Dienstes zu nutzen. Vereinfacht lässt sich sagen,
dass die appId von der in der Adressleiste des Webbrowsers sichtbaren Domain
abgeleitet sein muss.

Einrichtung

Um eine neue Smartcard mit dem Konto eines Nutzers zu verknüpfen, sendet
der Dienst eine Anfrage des Typs u2f_register_request an die Smartcard.
Neben der appId und der Nonce besteht die Möglichkeit etwaige bereits be-
kannte Schlüssel in der Anfrage zu vermerken. Dadurch ist es der Smartcard
möglich zu erkennen, dass sie bereits mit dem Konto des Nutzers verknüpft ist,
um dadurch zu vermeiden, dass eine Smartcard mehrfach mit dem identischen
Konto verknüpft wird [BBL15, Abschnitt 5.1.3].

6

2.2. Universal Second Factor

Nachdem der Nutzer die Anfrage durch Drücken der Taste an der Smartcard
bestätigt hat, generiert die Smartcard ein neues ECDSA-Schlüsselpaar. Der
öffentliche Schlüssel des Schlüsselpaares wird zusammen mit einem Bezeich-
ner für dieses Schlüsselpaar, einem Attestierungszertifikat und einer ECDSA-
Signatur eines SHA-256-Hashs zurück an den Webbrowser gesendet (Abbil-
dung 2.2).

Diese Antwort ist vom Dienst in ihre Bestandteile zu zerlegen und anschlie-
ßend zu überprüfen: Zum einen müssen alle Felder der Antwort das spezifi-
zierte Format aufweisen. So ist unter anderem zu prüfen, dass das reservierte
Byte am Anfang der Antwort den Wert 0x05 enthält. Zum anderen ist die
angehängte Signatur zu prüfen. Diese muss vom mitgesendeten Attestierungs-
zertifikat stammen und sichert neben den einzelnen Feldern der Antwort auch
die ursprüngliche Anfrage an die Smartcard. Dadurch ist sichergestellt, dass
die Antwort „frisch“ auf Basis der Anfrage erzeugt und nicht im Rahmen eines
Replay-Angriffs untergeschoben wurde. Das Attestierungszertifikat soll hinge-
gen identisch auf einer Vielzahl an Smartcards eines Herstellers hinterlegt sein
und es dem Dienst somit ermöglichen, nur speziell autorisierte Smartcards zu
erlauben, um dadurch ein gewisses Sicherheitsniveau zu garantieren2 [Sri+15,
Abschnitt 8]. Beim Parsen der Antwort ergibt sich die Schwierigkeit, dass die
Länge des Attestierungszertifikats nicht explizit angegeben ist. Stattdessen
muss die Struktur des X.509-Zertifikats [RFC5280, Abschnitt 4.1] nach den in
X.6903 spezifierten Distinguished Encoding Rules (DER) für die Abstract Syn-
tax Notation One (ASN.1) analysiert und dadurch die Länge des Zertifikats
ermittelt werden [BE15, Abschnitt 4.3].

Nachdem der Anbieter die Antwort der Smartcard verifiziert hat, ist es noch
erforderlich den erhaltenen öffentlichen Schlüssel und Bezeichner zu hinterle-
gen, damit er für die Authentifizierung des Nutzers genutzt werden kann.

2Keine der Smartcards, die dem Autor dieser Arbeit zum Testen zur Verfügung standen,
implementierte das Attestierungszertifikat konform zur Spezifikation. Eine Smartcard
erzeugte für jeden Schlüssel ein neues Attestierungszertifikat, die andere verwendete ein
Attestierungszertifikat, welches die Seriennummer der Smartcard enthielt und es somit
erlaubt, die Smartcard über Dienste hinweg eindeutig zu identifizieren.

3International Telecommunication Union. Information Technology — ASN.1 Encoding Ru-
les — Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER),
and Distinguished Encoding Rules (DER). ITU-T Recommendation X.690. Juli 2002.
url: http://www.itu.int/ITU-T/studygroups/com17/languages/X.690-0207.pdf.

7

http://www.itu.int/ITU-T/studygroups/com17/languages/X.690-0207.pdf

2. Zweifaktor-Authentifizierung

(a) Bedeutung der Bits des ersten Bytes.

Abbildung 2.3.: Aufbau der Antwort auf einen u2f_sign_request [BE15, Ab-
schnitt 5.4].

Authentifizierung

Um einen Nutzer nach erfolgter Einrichtung zu authentifizieren, wird eine An-
frage des Typs u2f_sign_request an die Smartcard übermittelt. Diese enthält
die appId, die Nonce und die bei der Einrichtung gespeicherten Bezeichner der
zur Authentifizierung zulässigen Schlüsselpaare.

Nachdem der Nutzer die Anfrage durch Drücken der Taste an der Smartcard
bestätigt hat, sendet die Smartcard analog zur Registrierung signierte Daten
(Abbildung 2.3) zurück an den Webbrowser. Anders als bei der Registrierung,
sind die Daten nicht mit dem Attestierungszertifikat, sondern mit dem priva-
ten Schlüssel eines der bei der Anfrage genannten Schlüsselpaare signiert. Der
Bezeichner des verwendeten Schlüssels wird getrennt von den signierten Daten
an den Webbrowser übermittelt.

Um die Signatur zu prüfen, ist es erforderlich den bei der Registrierung er-
haltenen öffentlichen Schlüssel zu vervollständigen, damit der Schlüssel durch
übliche Kryptografie-Bibliotheken verarbeitet werden kann. Der Grund dafür
ist, dass die bei der Einrichtung übermittelten Daten lediglich den Punkt auf
der NIST P-256-Kurve, ohne weitere Informationen, repräsentieren. Im All-
gemeinen ist es dazu erforderlich den Kurvenpunkt in die SubjectPublicKey
Info-Struktur eines X.509-Zertifikats einzubetten, damit die verwendete Bi-
bliothek erkennt, dass es sich um einen Punkt auf der P-256-Kurve und nicht
etwa um einen RSA-Modulus und -Exponenten handelt. Der ASN.1-Aufbau

8

2.2. Universal Second Factor

der SubjectPublicKeyInfo-Struktur für ECDSA-Schlüssel ist in RFC 54804

beschrieben.
Neben der Validierung der Signatur hat der Anbieter zu prüfen, dass der

in der Antwort übermittelte counter-Wert streng monoton ansteigt. Sollte
der übermittelte Wert geringer als der zuletzt bekannte sein, so wurde die
Smartcard möglicherweise kopiert oder modifiziert und somit kompromittiert.
Die Authentifizierung des Nutzers kann in diesem Fall natürlich nicht erfolgen.
Nachdem der Benutzer erfolgreich authentifiziert, also die Signatur validiert

und der counter-Wert überprüft wurde, ist noch der übermittelte counter-
Wert zu hinterlegen, um das Verfahren abzuschließen.

2.2.3. Analyse des Verfahrens

Universal Second Factor setzt bei der Kommunikation zwischen Smartcard
und Dienst konsequent auf signierte Nachrichten, wobei das Verfahren auf die
durch NIST zertifizierte P-256-Kurve standardisiert wurde. Dieses Verfahren
ist unter Kryptografen umstritten. Einerseits, da einige Designentscheidun-
gen der Kurve unklar sind, andererseits, da es unverhältnismäßig schwierig ist
dieses Verfahren vollständig korrekt zu implementieren [BL14]. Dennoch gilt
das Verfahren grundsätzlich als sicher, daher soll der Fokus dieser Analyse auf
der praktischen Umsetzung des Verfahrens und anderen Designentscheidungen
liegen.
Die Sicherheit von U2F basiert auf der Sicherheit der ECDSA-Signaturen.

Das primäre Standbein ist also die Geheimhaltung der privaten Schlüssel. Dies
beginnt bereits bei der Erzeugung des Schlüsselpaares. Es ist essentiell, dass
die Smartcard einen sicheren, kryptografischen Zufallsgenerator enthält, da die
privaten Schlüssel andernfalls unter Umständen berechnet oder erraten werden
könnten. Nachdem die Schlüssel erzeugt wurden, dürfen diese die Smartcard
nicht verlassen. Die einzig zulässige Operation ist es, die Smartcard darum zu
bitten eine Authentifizierungsanfrage zu signieren. Neben der Geheimhaltung
der Schlüssel stellt die Spezifikation weitere Anforderungen an den Hersteller
der Smartcard, denn so muss zum Beispiel die Trennung der Namensräume auf
Basis der appId korrekt umgesetzt sein. Auch muss sichergestellt werden, dass

4S. Turner u. a. Elliptic Curve Cryptography Subject Public Key Information. RFC 5480.
RFC Editor, März 2009. url: http://www.rfc-editor.org/rfc/rfc5480.txt.

9

http://www.rfc-editor.org/rfc/rfc5480.txt

2. Zweifaktor-Authentifizierung

eine Nutzung der Smartcard durch den Webbrowser nur möglich ist, wenn der
Taster an der Smartcard betätigt wurde.

Auf Seiten der Webbrowser-Hersteller muss sichergestellt sein, dass ein An-
bieter mit bösartigen Absichten nicht in der Lage ist die appId eines anderen
Anbieters zu nutzen. Dazu muss das in Abschnitt 2.2.2 bereits genannte Re-
gelwerk vollständig korrekt implementiert werden [BH15, Abschnitt 3.1.2].

Schlussendlich muss auch der Anbieter das Verfahren korrekt implementie-
ren: Er muss die ECDSA-Signaturen korrekt prüfen und sicherstellen, dass der
counter-Wert streng monoton ansteigt.

Auch wenn das U2F-Verfahren in der Theorie sicher sein mag, ist es ein sehr
komplexes Verfahren, denn es müssen drei unterschiedliche Parteien jeweils
alle für sie relevanten Details der Spezifikation vollständig korrekt implemen-
tieren. Wenn nur eine der Parteien einen Fehler in der Umsetzung macht, ist
die Sicherheit gefährdet. Für den Benutzer ist es schwierig zu prüfen, ob alle
Teile korrekt funktionieren. So ist es nahezu unmöglich zu prüfen, ob der Zu-
fallsgenerator innerhalb der Smartcard zuverlässig funktioniert. Ebenso ist es
ohne Programmiererfahrung nicht möglich zu prüfen, ob der Webbrowser die
Validierung der appId korrekt umsetzt.

Diese Komplexität schützt aber gegen Probleme, gegen die beispielsweise das
TOTP-Verfahren nicht schützen kann (Abschnitt 2.3.3): Bei korrekter Umset-
zung des U2F-Verfahrens ist der Benutzer gegen Phishing-Angriffe geschützt.
Aufgrund der appId ist es für eine Phishing-Seite nicht möglich eine gültige
Signatur der Challenge des Anbieters zu erwirken. Selbst wenn der Phisher in
der Lage ist durch einen Man in the Middle-Angriff die Domain des Anbie-
ters zu kapern, kann der Phishing-Angriff abgewehrt werden. Es ist nämlich
möglich, gewisse Parameter der Transport Layer Security (TLS)-Verbindung
mit in die Challenge einzubetten [Sri+15, Seite 8]. Diese Parameter können
durch den Phisher nicht kontrolliert werden und unterscheiden sich daher bei
der Verbindung zwischen Nutzer und Phisher sowie Phisher und Anbieter,
wodurch der Man in the Middle-Angriff auffliegt. Auch ist es schwierig das
Authentifizierungsmerkmal zu duplizieren. Selbst wenn ein Angreifer an das
Schlüsselpaar gelangen würde, müsste er einen plausiblen Wert für den streng
monotonen counter erraten. Wählt er zu niedrig, dann fällt der Angriff sofort
auf. Wählt er deutlich zu hoch, dann ist es ebenfalls unwahrscheinlich, dass
die ursprüngliche Smartcard die Daten signiert hat.

10

2.2. Universal Second Factor

Fazit

U2F ist ein sicheres Verfahren, bei dem im Entwurf eine Vielzahl von An-
griffsmöglichkeiten bedacht und abgewehrt wurden. Diese Sicherheit stützt
sich jedoch auf die korrekte Implementation der umfangreichen Spezifikation.
Wie in Fußnote 2 angemerkt, implementiert keine der Smartcards des Autors
das Attestierungszertifikat korrekt. Dieser Fehler in der Umsetzung ist zwar
nicht sicherheitsrelevant, jedoch im Falle der einen Smartcard aus Gründen der
Privatsphäre fragwürdig. Dies macht deutlich, dass Fehler in der Umsetzung
definitiv vorkommen und dadurch die Sicherheit von Universal Second Factor
gefährden.

2.2.4. Vergleich mit anderen Smartcard-Verfahren

Es gibt eine Vielzahl von Unternehmen, die Smartcards für die Nutzung am
Rechner anbieten. Die meisten dieser Systeme sind jedoch nicht unmittelbar
zur Nutzung im Bereich der Mehrfaktorauthentifizierung geeignet. Stattdessen
sind diese dazu gedacht, die Verwendung von Software im Bereich der asym-
metrischen Verschlüsselung durch eine Hardware-basierte Lösung zu ersetzen.
Beispielsweise lassen sich ein Großteil der angebotenen Smartcards mithilfe von
Pretty Good Privacy (PGP)-Software ansteuern. Die Smartcards, welche für
die Verwendung als Authentifizierungsmerkmal konzipiert wurden, sind jedoch
oftmals proprietär. So wird beispielsweise ein USB-Stick zum sicheren Versen-
den seiner Steuererklärung mittels ELSTER angeboten [sec]. Dieser USB-Stick
ist allerdings nicht für andere Zwecke verwendbar. Breitere Unterstützung ha-
ben Systeme von Yubico und Nitrokey, allerdings ist man auch hier bei den
älteren Modellen an den Hersteller gebunden und von diesem abhängig. Beide
Unternehmen bieten jedoch mittlerweile auch Smartcards an, die neben dem
proprietären Verfahren ebenso U2F unterstützen.

Fazit

Universal Second Factor bietet den großen Vorteil, dass es ein offener Stan-
dard ist. Dadurch besteht weder für den Anbieter, noch für den Nutzer die
Gefahr, dass das System eingestellt wird und ein neues Verfahren implemen-
tiert beziehungsweise eine neue Smartcard erworben werden muss. Durch die
standardmäßige Integration in Webbrowsern und Hersteller, die einfache U2F-

11

2. Zweifaktor-Authentifizierung

kompatible Smartcards bereits für unter 10e anbieten, ist die Einstiegshürde
sehr gering. So müssen keine Geräte-Treiber installiert werden und die Inves-
tition lohnt sich auch dann, wenn noch nicht viele der genutzten Dienste das
Verfahren implementieren.

2.3. Time-based One-time Password Algorithm
Der Time-based One-time Password Algorithm (TOTP), auch bekannt als
RFC 62385, ist eine Erweiterung des in RFC 42266 spezifizierten HMAC-Based
One-Time Password Algorithm (HOTP). Durch die Standardisierung als RFC
und einfacher Implementierung auf Seiten des Dienstes, ist es das wohl belieb-
teste Verfahren für Zweifaktor-Authentifizierung im Web. Die Google Authen-
ticator-Client-Implementierung (Abbildung 2.4) für Android verzeichnet bei-
spielsweise zwischen 10 und 50-Millionen Installationen und rund 140-Tausend
Bewertungen [Goo].

2.3.1. Voraussetzungen

Die Anforderungen auf Seiten des Anbieters beschränken sich auf eine korrekte
Systemzeit. Auf Seiten des Nutzers ist ein TOTP-Generator erforderlich. Im
Regelfall ist dies eine App für das eigene Smartphone. Der Generator könnte
aber auch in den eigenen Passwort-Safe integriert sein [Mar].

2.3.2. Funktionsweise

Einrichtung

Bei der Einrichtung der Zweifaktor-Authentifizierung mittels TOTP generiert
der Dienst mithilfe eines kryptografisch sicheren Zufallszahlengenerators ein
Shared Secret, welches der Benutzer in seine TOTP-Anwendung überträgt.
Um die Übertragung zu erleichtern, bieten übliche Client-Anwendungen die
Möglichkeit, das Shared Secret zusammen mit dem Namen des Dienstes und
den Parametern des Algorithmus in Form eines QR-Code an eine Smartphone-
Anwendung zu übertragen (Abbildung 2.5) [Goo15].

5D. M’Raihi u. a. TOTP: Time-Based One-Time Password Algorithm. RFC 6238. RFC
Editor, Mai 2011. url: http://www.rfc-editor.org/rfc/rfc6238.txt.

6D. M’Raihi u. a. HOTP: An HMAC-Based One-Time Password Algorithm. RFC 4226.
RFC Editor, Dez. 2005. url: http://www.rfc-editor.org/rfc/rfc4226.txt.

12

http://www.rfc-editor.org/rfc/rfc6238.txt
http://www.rfc-editor.org/rfc/rfc4226.txt

2.3. Time-based One-time Password Algorithm

Abbildung 2.4.: Ansicht der Einmalkennwörter in Google Authenticator für An-
droid [Goo].

Abbildung 2.5.: QR-Code, welcher das TOTP-Shared Secret enthält.

13

2. Zweifaktor-Authentifizierung

Authentifizierung

Sowohl dem Anbieter als auch der Client-Anwendung sind die Parameter des
Algorithmus sowie das vereinbarte Shared Secret bekannt. Bei der Authentifi-
zierung bittet der Benutzer seine Client-Anwendung das aktuelle Einmalkenn-
wort zu erzeugen und sendet es an den Anbieter. Dieser generiert nun ebenfalls
das aktuelle Einmalkennwort und vergleicht es mit dem übermittelten Einmal-
kennwort des Nutzers. Wenn beide Kennwörter übereinstimmen, dann ist der
Nutzer erfolgreich authentifiziert worden.
Der Algorithmus zur Generierung der Einmalkennwörter mittels HOTP (der

Basis für TOTP) lautet:

Algorithmus 2.1 HMAC-based One-time Password Algorithm
H ← HMAC-SHA1(K, C) {H[0..159] ist nun ein 160-Bit String}
O ← H[156..159] {O ist die Zahl, die durch die letzten 4 Bit von H reprä-
sentiert wird}
S ← H[O × 8 + 1..O × 8 + 31] {S ist die Zahl, die, ohne Berücksichtigung
des Most Significant Bit, durch die Bytes O bis O + 3 von H repräsentiert
wird}
return S mod 10D

Hierbei bezeichnet HMAC-SHA1 den in RFC 21047 beschriebenen Algorith-
mus unter Verwendung des in RFC 31748 definierten Secure Hash Algorithm 1,
K das Shared Secret, C einen streng monoton steigenden Zähler und D die
Länge des gewünschten Einmalkennwortes.
TOTP definiert den Wert von C wie folgt auf Basis der aktuellen Uhrzeit:

Algorithmus 2.2 Time-based One-time Password Algorithm
return

⌊
T
X

⌋

Hierbei bezeichnet T die Anzahl der Sekunden, die seit dem 1. Januar 1970
00:00:00 UTC vergangen sind (UNIX-Timestamp) und X die mit der Client-
Anwendung vereinbarte Schrittgröße.
Unter Verwendung der Standardparameter (X = 30, D = 6) wird also al-

le 30 Sekunden ein neues Einmalkennwort, bestehend aus 6 Ziffern, erzeugt.
7Hugo Krawczyk, Mihir Bellare und Ran Canetti. HMAC: Keyed-Hashing for Message
Authentication. RFC 2104. RFC Editor, Feb. 1997. url: http://www.rfc-editor.org/
rfc/rfc2104.txt.

8D. Eastlake und P. Jones. US Secure Hash Algorithm 1 (SHA1). RFC 3174. RFC Editor,
Sep. 2001. url: http://www.rfc-editor.org/rfc/rfc3174.txt.

14

http://www.rfc-editor.org/rfc/rfc2104.txt
http://www.rfc-editor.org/rfc/rfc2104.txt
http://www.rfc-editor.org/rfc/rfc3174.txt

2.3. Time-based One-time Password Algorithm

Um die Benutzerfreundlichkeit zu erhöhen, ist es möglich, dass der Anbieter
zusätzlich das jeweils vorherige und nächste Einmalkennwort akzeptiert. Dazu
inkrementiert beziehungsweise dekrementiert der Anbieter den mittels Algo-
rithmus 2.2 ermittelten Wert von C um 1. Dies erlaubt es dem Benutzer sich
zu authentifizieren, auch wenn die Uhrzeit seiner Client-Anwendung leicht ab-
weicht oder er den Code erst am Ende des 30-sekündigen Zeitfensters abliest.

2.3.3. Analyse des Verfahrens

Primärer Baustein des TOTP-Verfahrens ist der Keyed-Hash Message Authen-
tication Code (HMAC), welcher gleich zu Beginn berechnet wird (Algorith-
mus 2.1). Die Sicherheit des Verfahrens steht und fällt mit der Sicherheit der
HMAC. Konkret müssen zwei Eigenschaften von der HMAC gefordert werden:

1. Die Ausgabe darf ohne Kenntnis des Shared Secrets nicht vorhersehbar
sein.

2. Die Ausgabe muss zufällig verteilt sein.

Wird die erste Eigenschaft verletzt, so ist das Verfahren offensichtlich un-
sicher. Wird die zweite Eigenschaft verletzt, so wäre es möglich taktisch an
einen Brute-Force-Angriff heranzugehen und somit die Chance zu erhöhen ein
richtiges Einmalkennwort zu erraten.
HMAC ist, wie der Name sagt, ein Message Authentication Code (MAC).

Zweck eines MACs ist es die Authentizität einer Nachricht sicherzustellen. Ein
Angreifer darf also nicht in der Lage sein einen gültigen MAC für eine von ihm
erstellte Nachricht zu erstellen. Im Kontext von TOTP möchte der Angreifer
also den MAC für die Nachricht C, dem streng monoton steigenden Zähler,
erstellen. Das HMAC-Verfahren gilt derzeit für die Verwendung als MAC als
sicher und wird unter anderem in TLS verwendet, um verschlüsselte Internet-
verbindungen zu authentifizieren. Es kann also davon ausgegangen werden,
dass die erste geforderte Eigenschaft erfüllt ist.
Die in TOTP verwendete HMAC ist HMAC-SHA1, das Verfahren basiert

also auf dem Secure Hash Algorithm 1. Diese Hash-Funktion erfüllt das Strict
Avalance Criterion [MI16], da sich jeder kleinsten Änderung an der Einga-
be jedes Bit der Ausgabe mit einer Wahrscheinlichkeit von 50% ändert. Die
Ausgabe des Secure Hash Algorithm (SHA) 1 ist also zufällig verteilt.

15

2. Zweifaktor-Authentifizierung

Beide Kriterien werden also von der verwendeten HMAC erfüllt. Für einen
Angreifer ist es folglich schwierig die Ausgabe der HMAC vorherzusehen. Es
bleibt zu untersuchen, ob die späteren Operationen die Eigenschaften verletzen:

Durch die Konstruktion des Wertes O (Algorithmus 2.1) wird erreicht, dass
jedes Byte der Ausgabe gleich wahrscheinlich in die Berechnung des Einmal-
kennwortes eingeht. Ungenutzt bleiben lediglich die oberen 4 Bit des letzten
Bytes. Bei der Berechnung des Modulos entsteht jedoch ein leichtes statisti-
sches Ungleichgewicht. Die Zahl S ist ein 31-Bit-Integer, also eine Zahl zwi-
schen 0 und 2.147.483.647. Bei der Berechnung des Modulos mit dem Wert 106

sind die Zahlen von 000.000 bis 483.647 somit wahrscheinlicher als die Zahlen
von 483.648 bis 999.999. Die Differenz liegt dabei jedoch unter 0,0001%. Um
das Ungleichgewicht zu korrigieren, müsste der Algorithmus jedoch verkompli-
ziert werden, da im Falle einer Zahl größer als 2.146.999.999 ein alternativer
Wert gefunden werden müsste. Dabei muss sichergestellt werden, dass dieser
Wert gleichverteilt wäre, da andernfalls keine Verbesserung eintreten würde.
Den Entwicklern war das Ungleichgewicht der Werte bekannt, sie entschieden
sich aufgrund der geringen Differenz der Wahrscheinlichkeit jedoch dazu den
Algorithmus so zu belassen, wie er ist, da dieser Umstand das Verfahrens nicht
nennenswert schwächt [RFC4226, Appendix A].

Bei dem TOTP-Verfahren ist es also auch einem versierten Angreifer nicht
möglich, ohne Kenntnis des Shared Secrets ein gültiges Einmalkennwort zu er-
zeugen. Dies kann in einer konkreten technischen Umsetzung jedoch anders
aussehen: Durch einen Seitenkanalangriff kann es möglich sein Informatio-
nen über das aktuell gültige Einmalkennwort zu erhalten. Beispielsweise durch
einen Timing-Angriff, wenn bei der Überprüfung des Einmalkennworts der
Vergleich abgebrochen wird, sobald eine Differenz festgestellt wurde.

Ebenso ist das TOTP-Verfahren, genauso wie reguläre Kennwörter, anfäl-
lig für einen Phishing-Angriff. Eine Phishing-Seite könnte den Benutzer nach
der Eingabe seines regulären Kennworts ebenfalls nach dem aktuell gültigen
Einmalkennwort fragen und dieses anschließend zum Login nutzen. In dieser
Hinsicht bietet der zweite Faktor in Form von TOTP kein nennenswertes Mehr
an Sicherheit, wenn die Angreifer die entsprechende Funktion in ihrer Phishing-
Seite implementieren. Wenn sie dies nicht tun, weil der Großteil der Nutzer
keine Mehrfaktorauthentifizierung nutzt, dann bietet TOTP einen zusätzlichen
Schutz.

16

2.3. Time-based One-time Password Algorithm

2.3.4. Vergleich mit anderen Einmalkennwort-Verfahren

Ähnlich wie sich Authentifizierungsverfahren in die drei eingangs genannten
Kategorien (Abschnitt 2.1) einordnen lassen, lassen sich auch die Einmalkenn-
wort-Verfahren kategorisieren:

Zeitbasiert TOTP

Zählerbasiert HOTP, Lamport One-Time Password (OTP)

Getrennter Kanal TAN-Liste, SMS

Challenge-Response Zero-Knowlege-Beweis

Gegenüber zählerbasierten Verfahren bieten zeitbasierte Verfahren den Vor-
teil, dass der Zustand der Berechnung des Einmalkennworts bei Anbieter und
Nutzer identisch ist. Es kann bei einem zählerbasierten Verfahren leicht pas-
sieren, dass der Nutzer versehentlich ein neues Einmalkennwort erzeugen lässt
und anschließend nicht nutzt, weil er sich gar nicht authentifizieren wollte. Da
der Anbieter keine Kenntnis darüber besitzt, dass ein Einmalkennwort unge-
nutzt blieb, erwartet dieser beim nächsten Authentifizierungsversuch das verse-
hentlich generierte Kennwort anstatt des Kennworts, das dem Nutzer angezeigt
wird. Dies hat zur Folge, dass der Nutzer sich nicht erfolgreich authentifizieren
kann, obwohl er seiner Meinung nach das korrekte Kennwort übermittelt hat.
Im Gegenzug ist ein zählerbasierter Generator in der Herstellung günstiger, da
dieser keine integrierte Uhr besitzen muss. Im Zeitalter der Smartphones mit
kostenfreien TOTP-Generatoren ist dieser Vorteil jedoch eher theoretischer
Natur.
Die Übermittlung von Einmalkennwörtern über einen getrennten Kanal in

Form einer TAN-Liste bietet den Vorteil, dass sie komplett ohne weitere Tech-
nik auskommt. Dieser Vorteil ist jedoch auch der größte Nachteil: Die Anzahl
der Einmalkennwörter ist begrenzt und somit muss die Liste regelmäßig er-
neuert werden. Dies verursacht laufende Kosten in Form von Porto und ist
möglicherweise mit langen Wartezeiten verbunden. Selbst wenn die Liste in di-
gitaler Form zur Verfügung gestellt werden würde, ist es erforderlich regelmäßig
an die Erneuerung zu denken. Im Ernstfall steht möglicherweise kein gültiges
Einmalkennwort zur Verfügung. Andere Verfahren, wie TOTP, bieten den Vor-
teil, dass diese Einmalkennwörter in unbegrenzter Menge zur Verfügung stellen

17

2. Zweifaktor-Authentifizierung

können. Die Übermittlung in Form von SMS teilt den Nachteil der Begrenzt-
heit der TAN-Liste nicht, erfordert aber beim Anbieter spezielle Hardware
zur Kommunikation mit dem Mobilfunknetz und verursacht laufende Kosten.
Auch ist es möglich, dass die Nachricht erst mit erheblicher Verzögerung beim
Nutzer ankommt, beispielsweise in Gegenden mit schlechter Netzabdeckung
oder in Gebäuden. TOTP funktioniert komplett ohne Kommunikation mit der
Außenwelt.
Der Übergang zwischen einem Challenge-Response-Einmalkennwortverfah-

ren und Smartcard-basierenden Verfahren ist fließend, ein ausreichend sicheres
Verfahren ist kaum im Kopf zu lösen und wenn die Challenge manuell in ein
Programm übertragen werden muss, dann ist der Schritt bis zur Smartcard
nicht mehr weit. Wenn nicht mit einer Smartcard gearbeitet wird, dann ha-
ben Challenge-Response-Verfahren den Nachteil, dass ein hoher Aufwand zur
Authentifizierung erforderlich ist; wenn mit einer Smartcard gearbeitet wird,
dann treffen die in Abschnitt 2.2.4 beschriebenen Vor- und Nachteile zu.

Fazit

Es wird deutlich, dass das TOTP-Verfahren im Bereich der Benutzerfreund-
lichkeit viele Vorteile gegenüber alternativer Einmalkennwortverfahren bietet.
Durch die Standardisierung lassen sich mittels einer Client-Anwendung eine
Vielzahl von Diensten sichern, die Kennwörter sind durch die geringe Länge
einfach zu übertragen und die erstmalige Einrichtung ist durch die Unterstüt-
zung für QR-Codes ohne besondere Kenntnisse zu bewerkstelligen. TOTP ist
auch in Bezug auf die technischen Implementierung attraktiv, so ist der Algo-
rithmus zur Generierung der Einmalkennwörter sehr simpel aufgebaut (siehe
Algorithmus 2.1) und lässt wenig Raum für sicherheitsrelevante Programmier-
fehler.

2.4. Verlust des zweiten Faktors

Es wird unweigerlich passieren, dass ein Nutzer des Dienstes die Möglichkeit
verliert sich mit dem gewählten zweiten Faktor zu authentifizieren. Ein Smart-
phone mit der TOTP-Client-Anwendung könnte beispielsweise zu Boden fal-
len oder gestohlen werden und dem Nutzer dadurch nicht mehr zur Verfügung
stehen. Oder aber der Nutzer deinstalliert die Client-Anwendung, um Spei-

18

2.4. Verlust des zweiten Faktors

cherplatz zu schaffen, und vergisst vorher die Zweifaktor-Authentifizierung bei
den betroffenen Diensten zu deaktivieren. Es sollte daher ein Konzept entwi-
ckelt werden, wie man dem Benutzer in diesem Fall helfen kann wieder an sein
Benutzerkonto zu gelangen, ohne die erhöhte Sicherheit durch die Zweifak-
tor-Authentifizierung zu untergraben. Ein einfaches Senden eines Links an die
hinterlegte E-Mail-Adresse wäre nicht ausreichend, da ein Angreifer mit Kon-
trolle über das E-Mail-Konto des Nutzers auf diese Weise sowohl das Kennwort
zurücksetzen, als auch die Zweifaktor-Authentifizierung deaktivieren könnte.
Wenn dem Anbieter des Dienstes die Adressdaten des Nutzers bekannt sind

(beispielsweise in einem Online-Shop), dann könnte er den Nutzer beispielswei-
se durch einen unterschriebenen Brief zusammen mit einer Kopie des Perso-
nalausweises authentifizieren. Eine andere Möglichkeit ist es, mehrere sichere
Verfahren zur Zweifaktor-Authentifizierung parallel anzubieten. Wenn einer
der Faktoren unbrauchbar wird, dann hat der Nutzer die Möglichkeit auf ei-
ne Alternative auszuweichen. So ist es üblich, bei der ersten Einrichtung eine
Liste von Einmalkennwörtern, ähnlich einer TAN-Liste, zu generieren, die der
Benutzer auf unterschiedlichste Art und Weise aufbewahren kann.

19

3. Implementation von Universal
Second Factor

Nachdem in Abschnitt 2.2 bereits untersucht wurde, wie Universal Second
Factor (U2F) laut Spezifikation implementiert werden sollte, soll sich Kapi-
tel 3 der konkreten Umsetzung einer Authentifizierung mittels U2F widmen.
Dazu wird zuerst einmal die bestehende Anwendung vorgestellt (Abschnitt
3.1), anschließend die notwendige technische Basis für die Mehrfaktor-Authen-
tifizierung geschaffen (Abschnitt 3.2). Nachdem alles vorbereitet wurde, wird
untersucht, wie die Kommunikation mit der Smartcard abläuft und die in Ab-
schnitt 2.2.2 kennengelernten „Responses“ verarbeitet werden (Abschnitt 3.3),
zweitens wird schließlich demonstriert, wie das Verfahren in das System einge-
bettet wird (Abschnitte 3.4, 3.5).
Ergebnis der Implementierung sollen zwei Dinge sein:

1. Eine wiederverwendbare U2F-Bibliothek, die die Kommunikation mit der
Smartcard übernimmt.

2. Eine flexible Integration einer Mehrfaktor-Authentifizierung, sodass oh-
ne viel Aufwand weitere Verfahren (wie beispielsweise TOTP) ergänzt
werden können.

3.1. Vorstellung des bestehenden Systems

Die bestehende Anwendung fitnessKOMPLEX ist in PHP 5.6 entwickelt und
kommuniziert via FastCGI mit demWebserver (Apache 2). Das Betriebssystem
der Server ist Red Hat Enterprise Linux (RHEL) 5. Der fitnessKOMPLEX
speichert seine Daten in einer SQL-Datenbank.
Die bestehende Authentifizierung ist direkt im Webserver implementiert und

kann über verschiedene Verfahren erfolgen. Im Regelfall wird der Nutzer über

21

3. Implementation von Universal Second Factor

das HTTP-Digest-Verfahren authentifiziert [RFC2617, Abschnitt 3]. Ein alter-
natives Verfahren ist die Authentifizierung über ein TLS-Clientzertifikat.
Allen Verfahren ist gemein, dass der Webserver den authentifizierten Nut-

zernamen als Umgebungsvariable an die PHP-Anwendung weitergibt. Die An-
wendung muss sich um nichts kümmern1. Das Kennwort des Nutzers wird zu
keinem Zeitpunkt an den fitnessKOMPLEX weitergegeben. Aufgrund dieser
Tatsache existiert in der Anwendung noch kein Sitzungssystem. Alle Anfragen
erfolgen zustandslos und der Benutzer wird bei jedem Seitenabruf erneut vom
Webserver authentifiziert.

3.2. Voraussetzungen schaffen

3.2.1. Sitzungssystem

Für das U2F-Verfahren und die Mehrfaktor-Authentifizierung im Allgemeinen
ist es erforderlich, Sitzungen verwalten zu können: Es muss möglich sein fest-
zustellen, ob der Nutzer die Seite zum ersten Mal öffnet und daher nach dem
zweiten Faktor gefragt werden sollte, oder, ob er sich bereits erfolgreich authen-
tifiziert hat. Für das U2F-Verfahren im Speziellen müssen die an die Smartcard
gesendeten Challenges gespeichert werden, damit die Responses anschließend
überprüft werden können.
PHP integriert bereits ein Sitzungssystem in der Standardbibliothek [The].

Dieses ist allerdings nicht nutzbar, da die Webserver als Cluster betrieben und
die Sitzungen nicht zwischen den einzelnen Knoten synchronisiert werden. Je
nachdem, ob man bei einem späteren Aufruf auf den gleichen Knoten gelangt,
besteht die Möglichkeit, dass die Sitzung als ungültig erkannt wird. Dies ist
offensichtlich unbefriedigend. Die naheliegende Alternative wäre es, die Sit-
zungen in der bestehenden SQL-Datenbank zu speichern. Dies würde jedoch
bedeuten, dass ebenfalls ein Verfahren zum Aufräumen abgelaufener Sitzun-
gen gefunden werden müsste. Andernfalls würde die Datenbank irgendwann
mit vielen Sitzungen unnötig aufgebläht. Für zuverlässige Aufräumarbeiten
wären zeitgesteuerte Aufgaben (Cronjobs) erforderlich, die aber nicht zur Ver-

1Tatsächlich wird die Anwendung nicht einmal gestartet, wenn für den aufgerufenen URL
die Authentifizierung aktiviert ist und der Nutzer nicht authentifiziert werden kann.
Die Entscheidung, ob eine Authentifizierung erfolgen soll oder nicht, wird auf Basis der
verwendeten Subdomain getroffen.

22

3.2. Voraussetzungen schaffen

fügung stehen. Stattdessen setzt die Beispielimplementierung zur Verwaltung
der Sitzungen auf ein verschlüsseltes, authentifiziertes Cookie [RFC6265]. Dies
hat den Vorteil, dass der Verantwortungsbereich für die Sitzungen nicht beim
Webserver, sondern beim Webbrowser liegt. Dieser hat dafür Sorge zu tra-
gen, dass die Sitzungsdaten zuverlässig gespeichert und der Anwendung zur
Verfügung gestellt werden. Die Anwendung selbst bleibt in dieser Hinsicht zu-
standslos. Ein etwaiges Ablaufdatum der Sitzung wird dabei innerhalb der
verschlüsselten Daten abgelegt. Das Datum, das beim Setzen des Cookies mit-
gesendet wird, könnte vom Nutzer manipuliert werden.
Zur Sicherung des Cookies wird auf die php-encryption-Bibliothek in Ver-

sion 1.2.1 gesetzt [Hor]. Eine neuere Version der Bibliothek ist aufgrund der
in RHEL 5 mitgelieferten FIPS-zertifizierten OpenSSL-Version inkompatibel
[Arc16]. Die Verwendung einer Bibliothek empfiehlt sich, da diese besser ge-
testet ist als eine manuell (auf Basis von OpenSSL) implementierte Verschlüs-
selungsroutine es jemals sein wird.

3.2.2. Datenbanktabellen

Die Informationen zur Mehrfaktor-Authentifizierung sollen ebenfalls in der
SQL-Datenbank hinterlegt werden. Dazu sind zwei Änderungen am Daten-
bank-Schema erforderlich:

1. Eine neue boolesche Spalte in der Nutzer-Tabelle (Person), welche spe-
zifiziert, ob für dieses Nutzerkonto eine Mehrfaktor-Authentifizierung er-
folgen soll.

2. Eine neue Tabelle (2fa), in der die eingerichteten Authentifizierungs-
merkmale hinterlegt werden.

Die einzelnen Spalten der 2fa-Tabelle (Abbildung 3.1) sind:

id Die id des Nutzers zu dem dieses Merkmal gehört.

type Die Art des Merkmals. In der Beispielimplementierung entweder u2f oder
scratch.

device Ein eindeutiger, vom Benutzer gewählter Name für das Merkmal (bei-
spielsweise „schwarze Smartcard“).

23

3. Implementation von Universal Second Factor

Abbildung 3.1.: Datenbankschema mit den notwendigen Änderungen für Mehr-
faktor-Authentifizierung.

data Ein opaker Bytestring mit Metadaten des Authentifizierungsmerkmals.
Der Inhalt ist abhängig von type zu interpretieren (beispielsweise der
öffentliche Schlüssel, Abschnitt 2.2.2).

3.2.3. OpenSSL

Voraussetzung für U2F ist eine Kryptografie-Bibliothek mit Unterstützung für
ECDSA-Signaturen auf der P-256-Kurve (Abschnitt 2.2.1). In der in RHEL 5
mitgelieferten OpenSSL-Version fehlt neben der Unterstützung für den Ad-
vanced Encryption Standard (AES) im CTR-Modus (Abschnitt 3.2.1) auch
die Unterstützung für Kryptografie auf Basis von elliptischen Kurven. Anders
als bei der php-encryption-Bibliothek, besteht bei der Kommunikation mit
der Smartcard aber die Möglichkeit diese Unzulänglichkeit sinnvoll zu umge-
hen. Anpassungen an einer Fremdbibliothek würden die Vorteile des Einsatzes
selbiger ad absurdum führen. Bei der selbst entwickelten Bibliothek zur Kom-
munikation mit der Smartcard kann die Problematik hingegen direkt bei der
Entwicklung berücksichtigt werden.
Anstatt auf die in PHP integrierte Funktion zum Validieren von Signaturen

zu setzen (openssl_verify), soll alternativ ein Kommandozeilenaufruf einer
geeigneten OpenSSL-Version verwendet werden können (openssl dgst). Da-
zu wird eine statisch kompilierte OpenSSL-Binary in der aktuellen (1.0.1c)
Version mitgeliefert. Diese kann dann über die exec-Funktion mittels PHP
angesprochen werden. Die Verwendung einer statisch kompilierten Binary bie-
tet hier den Vorteil, dass alle Abhängigkeiten von OpenSSL in der Binary
enthalten sind. Diese Binary kann also auf jedem Rechner verwendet werden,

24

3.3. Kommunikation mit der Smartcard

auf dem ein Linux-Kernel (Version 2.6 oder höher) läuft - unabhängig davon,
in welcher Version die Systembibliotheken vorliegen.

3.3. Kommunikation mit der Smartcard

Zur Kommunikation mit der Smartcard wurde eine wiederverwendbare PHP-
Klasse entwickelt. Das öffentliche API dieser Klasse besteht, neben dem Kon-
struktor, aus 4 Methoden: Jeweils eine Methode zum Generieren der Challenge
und Verarbeiten der Response für beide der Funktionen, die die Smartcard zur
Verfügung stellt:

generateRegisterRequest Berechnet die notwendigen Eingabeparameter für
einen u2f_register_request.

verifyRegisterResponse Validiert und verarbeitet die Antwort auf einen u2f_
register_request.

generateSignRequest Berechnet die notwendigen Eingabeparameter für einen
u2f_sign_request.

verifySignResponse Validiert und verarbeitet die Antwort auf einen u2f_
register_request.

Die einzelnen Methoden sind so entwickelt worden, dass es möglichst schwie-
rig ist das API fehlerhaft zu verwenden und dadurch versehentlich Sicherheits-
lücken einzuführen. So werden von den verify*Response-Methoden Excepti-
ons geworfen, wenn die Antwort der Smartcard nicht gültig validiert werden
konnte. Dadurch wird sichergestellt, dass es, anders als beim Rückgabewert,
nicht möglich ist zu vergessen zu überprüfen, ob die Antwort gültig war. Wenn
die Exception nicht behandelt wird, dann wird die Anfrage automatisch seitens
der Laufzeitumgebung abgebrochen. Ebenso wurden die Parameter der Metho-
den so gewählt, dass die Antwort der Smartcard unverändert genutzt werden
kann. Dadurch muss der Nutzer der Klasse die Antwort lediglich übergeben,
ohne vorab komplexe Vorarbeit leisten zu müssen.
Auf Seiten des Webbrowsers setzt die Integration auf eine von Google entwi-

ckelte JavaScript-Bibliothek, die das von der FIDO Alliance spezifizierte High-
Level-JavaScript-API zur Verfügung stellt [BBL15; Goo14].

25

3. Implementation von Universal Second Factor

Alle nachfolgend kennengelernten Strukturen werden in der Kommunikation
mittels JavaScript Object Notation (JSON) kodiert.

3.3.1. __construct

Die einzige Aufgabe des Konstruktors ist es, zwei Parameter, die für meh-
rere Methoden benötigt werden, zu hinterlegen: Die appId (Abschnitt 2.2.2)
und ein Pfad zu einer OpenSSL-Binary, falls die in PHP integrierte Version
unzulänglich ist (siehe Abschnitt 3.2.3).

3.3.2. generateRegisterRequest

generateRegisterRequest berechnet den notwendigen Inhalt für die Regis
terRequest-Struktur, welche in der u2f.sign-Methode des JavaScript-API
ein notwendiger Parameter ist.

1 dictionary RegisterRequest {

2 DOMString version ;

3 DOMString challenge ;

4 };

Listing 3.1: Aufbau der RegisterRequest-Struktur. [BBL15, Abschnitt 5.1]

version wird fest als U2F_V2 gewählt. challenge ist ein mit einem kryp-
tografisch sicheren Zufallszahlengenerator erzeugter Bytestring der Länge 32,
der mittels websafe-base64 kodiert wurde [RFC4648, Abschnitt 5].

3.3.3. verifyRegisterResponse

verifyRegisterResponse ist als Gegenstück zu generateRegisterRequest
dafür zuständig, die RegisterResponse-Struktur in der Antwort der Smart-
card zu verarbeiten.

1 dictionary RegisterResponse {

2 DOMString version ;

3 DOMString registrationData ;

4 DOMString clientData ;

5 };

Listing 3.2: Aufbau der RegisterResponse-Struktur [BBL15, Abschnitt 5.1.3].

26

3.3. Kommunikation mit der Smartcard

registrationData ist die, in websafe-base64 kodierte, Antwort auf die An-
frage (siehe Abbildung 2.2). clientData ist eine in websafe-base64 kodierte
Struktur des Typs ClientData.

1 dictionary ClientData {

2 DOMString typ;

3 DOMString challenge ;

4 DOMString origin ;

5 (DOMString or JwkKey) cid_pubkey ;

6 };

Listing 3.3: Aufbau der ClientData-Struktur [BE15, Abschnitt 7].

Aufgabe der Methode ist es, die einzelnen Bestandteile der RegisterRes
ponse-Struktur zu verarbeiten und zu prüfen. Die Prüfung von clientData
ist trivial:

1. typ muss navigator.id.finishEnrollment sein.

2. challenge muss demWert challenge des zugehörigen RegisterRequest
entsprechen (Abschnitt 3.3.2).

3. origin wird, wenn gewünscht, vom aufrufenden Code überprüft. Der
Wert steht in keiner direkten Beziehung zum U2F-Protokoll selbst, ei-
ne fehlende Prüfung verringert die Sicherheit des Verfahrens nicht. Die
Prüfung des Werts dient dem Schutz vor Phishing-Angriffen.

4. cid_pubkey wird, wie origin, vom aufrufenden Code überprüft. Damit
dieses Feld überhaupt befüllt wird, ist eine spezielle TLS-Konfiguration
innerhalb des Webservers erforderlich.

Die Prüfung von registrationData gestaltet sich ein wenig komplexer:

1. Extrahieren der ersten 3 Felder über feste Byte-Offsets und Länge.

2. Extrahieren des 4. Feldes. Die Länge wird durch das 3. Feld spezifiziert.
Das 3. Feld ist dazu als 8-Bit-Zahl zu interpretieren.

3. Extrahieren des 5. Feldes (Attestierungszertifikat). Die Länge wird durch
das eindeutige Parsen des X.509-Zertifikats bestimmt (siehe unten).

4. Extrahieren des letzten Feldes (Signatur). Das Feld erstreckt sich bis zum
Ende des Bytestrings.

27

3. Implementation von Universal Second Factor

5. Das 1. Feld muss den Wert 0x05 besitzen.

6. Alle Felder fester Länge müssen diese Länge besitzen.

7. Die Signatur muss durch das Attestierungszertifikat gültig signiert wor-
den sein. Der Aufbau der von der Signatur authentifizierten Daten ist in
Abbildung 2.2 abzulesen.

Das Attestierungszertifikat ist DER-kodiert in dem Bytestring eingebettet.
Um es zu extrahieren, ist es erforderlich die Länge der äußersten SEQUENCE der
Certificate ASN.1-Struktur zu ermitteln. Wie genau dies zu tun ist, ist in
X.680 und X.690 spezifiziert [X.680, Abschnitt 8.4] [X.690, Abschnitte 8.1.2,
8.1.3.5, 8.9.1, 10.1].
Zur Prüfung der Signatur mittels OpenSSL ist es erforderlich das Zertifikat

in das Privacy Enhanced Mail (PEM)-Format zu überführen. Dazu ist es le-
diglich erforderlich das Zertifikat im DER-Format mittels base64 zu kodieren
und in das PEM-Armoring einzubetten:

1 -----BEGIN CERTIFICATE -----

2 ...

3 -----END CERTIFICATE -----

Listing 3.4: PEM-Armoring von Zertifikaten.

Nachdem die Antwort überprüft wurde, gibt die Methode eine opake Struk-
tur zur Verarbeitung mittels generateSignRequest und verifySignResponse
zurück. Diese Struktur enthält den von der Smartcard übermittelten öffentli-
chen Schlüssel, Schlüsselbezeichner und die U2F-Version. Außerdem wird ein
Standardwert für den streng monoton steigenden counter (0) eingebettet.

3.3.4. generateSignRequest

Diese Methode arbeitet ganz analog zu generateRegisterRequest. Ein Un-
terschied besteht darin, dass sie ein Array von Schlüsseln entgegennimmt, die
bereits mit dem Benutzerkonto verknüpft sind. Ein Schlüssel wird in diesem
Array durch die Struktur, die von verifyRegisterResponse zurückgegeben
wird, repräsentiert. Ein weiterer Unterschied ist, dass der Rückgabewert keine
vordefinierte Struktur ist, sondern alle Felder der Struktur als einzelne Para-
meter an das JavaScript-API übergeben werden.

28

3.3. Kommunikation mit der Smartcard

3.3.5. verifySignResponse

Analog zu verifyRegisterResponse verarbeitet diese Methode die Antwort
auf eine Authentifizierungsanfrage, wie sie mit generateSignRequest erzeugt
wurde.

1 dictionary SignResponse {

2 DOMString keyHandle ;

3 DOMString signatureData ;

4 DOMString clientData ;

5 };

Listing 3.5: Aufbau der SignResponse-Struktur [BBL15, Abschnitt 5.2.2].

keyHandle ist der Bezeichner des Schlüssels, der schlussendlich die Authen-
tifizierungsanfrage bestätigt hat. signatureData ist die, in websafe-base64
kodierte, Antwort auf die Anfrage (siehe Abbildung 2.3). clientData ist,
wie bei verifyRegisterResponse, eine websafe-base64-kodierte ClientData-
Struktur.
Die Prüfung von clientData erfolgt mit dem einzigen Unterschied, dass der

typ auf navigator.id.getAssertion lauten muss, identisch zu der Prüfung
in verifyRegisterResponse.

signatureData ist wie folgt zu prüfen:

1. Extrahieren aller 3 Felder über feste Byte-Offsets und Länge.

2. Überprüfung der Bits des 1. Feldes (das Byte muss die Wertigkeit 0x01
besitzen).

3. Ermitteln des verwendeten Schlüssels auf Basis von keyHandle.

4. Die Signatur muss durch den verwendeten Schlüssel gültig signiert wor-
den sein. Der Aufbau der von der Signatur authentifizierten Daten ist in
Abbildung 2.3 abzulesen.

5. Der counter-Wert muss höher sein als der zuletzt bekannte counter-
Wert.

Damit der bei der Registrierung erhaltene öffentliche Schlüssel zur Signatur-
prüfung genutzt werden kann, ist es erforderlich ihn zu vervollständigen (Ab-
schnitt 2.2.2). In der Implementierung erfolgt dies bereits in verifyRegister

29

3. Implementation von Universal Second Factor

Response, da es nicht notwendig ist die Vervollständigung bei jeder Authenti-
fizierung von vorne vorzunehmen. Zur Vervollständigung wird die DER-Kodie-
rung der ASN.1-Struktur eines öffentlichen Schlüssels aufgebaut und der erhal-
tene Kurvenpunkt darin eingebettet. Wie genau dies abläuft, ist in RFC 5480,
X.680 und X.690 definiert [RFC5480, Abschnitt 2] [X.680, Abschnitt 8.4] [X.690,
Abschnitte 8.1.2, 8.6.2.2, 8.19.1, 10.2]. Analog zum Attestierungszertifikat in
verifyRegisterResponse wird der Schlüssel anschließend in das PEM-For-
mat konvertiert und dann an OpenSSL zur Signaturprüfung übergeben.

1 -----BEGIN PUBLIC KEY -----

2 ...

3 -----END PUBLIC KEY -----

Listing 3.6: PEM-Armoring von öffentlichen Schlüsseln.

Wenn die Antwort gültig war, wird der counter-Wert des verwendeten
Schlüssels aktualisiert und das aktualisierte Array der übergebenen Schlüssel
zurückgegeben, damit diese in der Datenbank hinterlegt werden können.

3.4. Aktivierung des zweiten Faktors

Wenn der Nutzer eine neue Smartcard mit seinem Konto verknüpfen möchte,
dann sind dazu zwei Dinge erforderlich:

1. Der eindeutige Name für die Smartcard.

2. Der öffentliche Schlüssel der Smartcard.

Ersteres wird durch ein simples Formularfeld erfragt. Für letzteres wird beim
Aufruf des Formulars mittels generateRegisterRequest eine Challenge er-
stellt und in der Sitzung hinterlegt. Die notwendigen Daten für das JavaScript-
API werden direkt in den Hypertext Markup Language (HTML)-Code der Ein-
richtungsseite eingebettet. Durch Betätigen eines Knopfes sendet der Nutzer
die Challenge an die Smartcard und nachdem er die Nutzung der Smartcard
autorisiert, sendet diese die Antwort zurück an den Webbrowser. Dieser ruft
dann die an das API übergebene Callback-Funktion auf und diese hinterlegt
die Antwort in einem versteckten Formularfeld. Wenn der Benutzer mit seiner
Eingabe zufrieden ist, sendet er das Formular ab.

30

3.5. Überprüfung des zweiten Faktors

Der Code, welcher das Formular entgegennimmt, prüft, ob alle Felder ausge-
füllt wurden und ob eine gültige Challenge in der Sitzung hinterlegt ist. Wenn
dies der Fall ist, wird die Antwort der Smartcard an verifyRegisterResponse
übergeben und im Erfolgsfall wird ein neuer Datensatz für die Smartcard in
der Datenbank hinterlegt. Der Benutzer wird dann zurück in die Liste seiner
Authentifizierungsmerkmale geleitet.

3.5. Überprüfung des zweiten Faktors

Sobald die Mehrfaktor-Authentifizierung für ein Konto aktiviert ist, muss der
zweite Faktor in jeder neuen Sitzung überprüft werden. Dazu wird in der
Sitzung der Zeitpunkt hinterlegt, zu dem zuletzt eine Mehrfaktor-Authenti-
fizierung durchgeführt wurde. Wenn dieser Zeitpunkt mehr als zwei Stunden2

verstrichen ist (oder bislang kein Zeitpunkt hinterlegt ist), dann ist es er-
forderlich eine neue Authentifizierung durchzuführen. Um diese Überprüfung
sicherzustellen, wird unmittelbar nach Ermittlung des Nutzers und Lesen der
Sitzung überprüft, ob mehr als zwei Stunden verstrichen sind. Wenn dies der
Fall ist und der aufgerufene URL nicht explizit freigeschaltet wurde (beispiels-
weise Impressum und die Seiten, die die Authentifizierung durchführen), dann
wird der Nutzer in eine Liste seiner hinterlegten Merkmale umgeleitet und die
Anfrage abgebrochen. In dieser Liste wählt der Nutzer dann das Merkmal, das
er verwenden möchte, und gelangt danach auf ein Formular mit dem er die
Authentifizierung durchführen kann.
Im Falle von U2F wird analog zur Aktivierung des zweiten Faktors die Chal-

lenge generiert und in der Sitzung hinterlegt. Ebenso enthält der HTML-Code
die notwendigen Parameter für das JavaScript-API. Mit Betätigen eines Knop-
fes sendet der Nutzer die Authentifizierungsanfrage an seine Smartcard. Nach-
dem er die Nutzung der Smartcard autorisiert hat, sendet diese die Antwort
zurück an den Webbrowser, der die Callback-Funktion aufruft. Diese hinter-
legt die Antwort in einem versteckten Formularfeld und sendet das Formular
selbstständig ab.
Die Überprüfung der gesendeten Formulardaten erfolgt analog zur Aktivie-

rung mittels verifySignResponse. Wenn die Daten gültig sind, wird in der
2Dieser Zeitraum sollte der durchschnittlichen Sitzungslänge entsprechend gewählt werden.
Wenn der Großteil der Nutzer die Anwendung mehr als zwei Stunden am Stück nutzt,
dann sollte die Gültigkeitsdauer der Authentifizierung entsprechend erhöht werden.

31

3. Implementation von Universal Second Factor

Sitzung der Zeitpunkt der letzten Authentifizierung hinterlegt und die Meta-
daten der Smartcard in der Datenbank aktualisiert, damit der counter-Wert
aktuell ist. Anschließend wird der Nutzer auf die Startseite der Anwendung
zurückgeleitet und kann sie, wie gewohnt, verwenden.

3.6. Fazit
Wie in den Abschnitten 3.2.2, 3.4 und 3.5 deutlich wird, sind nur geringe
Änderungen am Bestandssystem erforderlich, um es mit einer Mehrfaktor-Au-
thentifizierung auszustatten. Neben den zwei Änderungen an der Datenbank
muss lediglich eine Überprüfung, ob der Nutzer bereits die Mehrfaktor-Authen-
tifizierung durchgeführt hat, direkt nach der Initialisierung der Sitzung ergänzt
werden. Alle anderen Änderungen waren entweder vorbereitende Maßnahmen,
die in vielen Systemen bereits umgesetzt sind, oder neue Formulare, welche die
Einrichtung und Prüfung der Merkmale vornehmen. Es ist also leicht möglich
zu prüfen, dass die Änderungen am Bestandscode der Anwendung korrekt sind
und keine sicherheitskritischen Fehler einführen.
Zur Prüfung der zweiten Zielsetzung wurde in der begleitenden Implemen-

tierung neben der Unterstützung für U2F eine Unterstützung für Notfallcodes
(ähnlich einer TAN-Liste) umgesetzt. Dafür war es lediglich erforderlich die er-
laubten Werte der type-Spalte in der 2fa-Tabelle zu erweitern und zwei neue
Formulare zur Einrichtung und Prüfung der Notfallcodes zu ergänzen. Am
PHP-Quelltext der Anwendung waren keine Änderungen erforderlich. Insge-
samt wurden nur rund 220 Zeilen Code, die dadurch leicht von einem zweiten
Entwickler überprüft werden können, ergänzt. Das System ist also modular
erweiterbar, falls in Zukunft weitere Verfahren gewünscht werden.

32

4. Autorisierung

Die Realisierung einer sicheren Authentifizierung mittels mehrerer Faktoren
stand im Fokus von Kapitel 2 und 3. Damit ist die Zugriffskontrolle jedoch
nicht abgeschlossen. Nachdem jetzt sicher bestimmt werden kann, wer die
Anwendung gerade verwendet (Authentifizierung), muss auch noch überprüft
werden, was diejenige Person in der Anwendung einsehen und verwenden darf
(Autorisierung). Eine sichere Autorisierung ist ohne eine sichere Authentifizie-
rung nicht zu realisieren: Es ist nicht zielführend bestimmte Funktionen nur
für den Geschäftsführer eines Unternehmens zur Verfügung zu stellen, wenn
sich gegenüber der Anwendung jeder als Geschäftsführer ausgeben kann und
dies von der Anwendung akzeptiert wird. Umgekehrt ist die Authentifizierung
ohne gesonderte Autorisierung in vielen - aber nicht allen - Fällen ebenso un-
befriedigend, wie in Abschnitt 4.1 noch genauer diskutiert wird.

Dieses Kapitel soll sich daher mit der Realisierung einer geeigneten Autori-
sierungsstrategie beschäftigen. Dabei werden verschiedene Konzepte zur Um-
setzung einer Autorisierung vorgestellt, die jeweils Vor- und Nachteile in Bezug
auf technische Komplexität, Mächtigkeit und administrative Verständlichkeit
haben.

Für einige Anwendungsfälle kann es sinnvoll sein, dass Zugriffsrechte dyna-
misch im System hinterlegt werden können. Beispielsweise könnte ein Profil
in einem sozialen Netzwerk nur für ausgewählte Freunde zugänglich gemacht
werden sollen. Dazu könnte bei der Registrierung eines Nutzers automatisch
ein Recht „Kann Profil von Max Mustermann aufrufen“ erzeugt und bei der
Löschung des Kontos wieder entfernt werden. Derartige Rechte sollten dem
Administrator in der zentralen Verwaltung, auch der Übersichlichkeit halber,
nicht angezeigt werden. Es wäre aber denkbar für Teammitglieder ein zen-
tral vergebenes Zugriffsrecht „Kann alle Profile einsehen“ anzulegen, das die
Prüfung des spezifischen Rechtes aushebelt.

33

4. Autorisierung

4.1. Keine gesonderte Autorisierung

Diese Autorisierungsstrategie führt keine Autorisierung durch. Jeder authenti-
fizierte Nutzer ist berechtigt alle Funktionen der Anwendung zu nutzen. Dieses
Verfahren ist offensichtlich technisch sehr einfach umzusetzen und auch die ad-
ministrative Verständlichkeit ist sehr gut: Es muss nichts programmiert und
auch nichts eingestellt werden. Dafür ist das Verfahren allerdings auch nicht
sehr mächtig: Nutzer dürfen entweder alles oder nichts. Aus diesem Grund eig-
net sich diese Art der Autorisierung nur schlecht für Anwendungen in denen
der Nutzerkreis nicht überschaubar ist (etwa, weil Nutzer sich selbstständig
registrieren können). Es wird unweigerlich zu Missbrauch kommen, sodass Zu-
griffsrechte für moderative Funktionen erforderlich werden.
Diese Autorisierungsstrategie wird beispielsweise vom Data Structure-Server

Redis verwendet: Jeder, der sich zu einem Redis-Server verbinden kann, kann
alle Befehle verwenden [San]. Dies bietet sich hier an, da der Kreis der Ver-
bindungsberechtigten ohnehin sehr klein ist (die Anwendung selbst und die
Systemadministratoren) und dadurch die Programmlogik von Redis einfacher
gestaltet sein kann. Ein weiterer Anwendungsfall für Authentifizierung ohne
Autorisierung könnte eine unternehmensinterne Informationsseite sein, die nur
aus dem Intranet des Unternehmens zugänglich ist. Die Authentifizierung er-
folgt über die abrufende IP-Adresse. Es wäre dann keine gesonderte Autorisie-
rung erforderlich, wenn keine sensiblen Informationen in diese Seite eingestellt
werden.

4.2. Rechtelevel

Ein Verfahren basierend auf Rechteleveln ordnet jedem Benutzer ein bestimm-
tes Zugriffslevel (in der Regel als Ganzzahl) zu. Den einzelnen Funktionen der
Anwendung wird ebenfalls eine Zahl zugeordnet - das Mindestlevel, um dieje-
nige Funktion nutzen zu können. In der technischen Umsetzung muss lediglich
das Level des Nutzers gespeichert und bei den einzelnen Funktionen dieses
Level mit einem festen Wert verglichen werden. Auf administrativer Ebene
ist das Verfahren ebenfalls sehr simpel: Der Administrator muss nur das Level
des Benutzers auswählen. Über welches Level welche Funktionen zur Verfügung
stehen, könnte unmittelbar neben dem Eingabefeld angezeigt werden, sodass es
unwahrscheinlich ist einen sicherheitsrelevanten Bedienfehler zu verursachen.

34

4.3. Vergabe einzelner Rechte an Nutzer

Jedoch ist auch dieses Verfahren nicht sehr mächtig: Es können nur Zugriffs-
rechte vergeben werden, die jeweils Teilmengen voneinander sind; ein höheres
Level inkludiert auch alle Rechte eines niedrigeren Levels. Die einzelnen Kom-
petenzen einer komplexeren Anwendung lassen sich so im Regelfall nicht ab-
bilden. Verglichen mit den einzelnen Rechten in einem Unternehmen sollte die
PR-Abteilung keinen Zugriff auf die privaten Daten der Mitarbeiter erhalten.
Umgekehrt sollte die HR-Abteilung aus Sicherheitsgründen keinen Zugriff auf
die Social-Media-Konten des Unternehmens erhalten. Keine der beiden Abtei-
lungen hat jeweils alle Rechte der anderen Abteilung, somit wären Rechtelevel
nicht mächtig genug diesen Fall abzudecken.
Diese Autorisierungsstrategie wird beispielsweise in Internet Relay Chat

(IRC)-Netzwerken verwendet. Pro Channel lassen sich die Level „Voice“ und
„Op“ vergeben (in einigen Netzwerken noch weitere); jeder „Op“ hat dabei
automatisch auch die Rechte von „Voice“. Auch die Minecraft Server-Software
regelt die Rechte von Operatoren über Zugriffslevel[129].

4.3. Vergabe einzelner Rechte an Nutzer

Hierbei werden einzelne Berechtigungen flexibel direkt an die registrierten Be-
nutzerkonten vergeben. In der technischen Umsetzung könnte dieses System
durch eine n:n-Relation „Darf“ zwischen dem Benutzer und der Berechtigung
realisiert werden. Zur Überprüfung der Berechtigung muss dann geprüft wer-
den, ob die entsprechende Relation in der SQL-Datenbank existiert. Von admi-
nistrativer Seite könnten die unterschiedlichen Berechtigungen im „Benutzer-
bearbeiten“-Formular aufgelistet und durch Checkboxen erteilt werden. Für
den Administrator ist diese Autorisierungsstrategie also sehr transparent: Er
sieht unmittelbar, welche Rechte ein bestimmter Nutzer besitzt und Fehlkon-
figurationen sind leicht zu erkennen. Allerdings ist die Verwaltung sehr auf-
wändig: Wenn man einer gesamten Klasse von Nutzern (beispielsweise allen
Mitarbeitern der PR-Abteilung) eine neue Berechtigung erteilen oder nehmen
möchte, dann müssen eine Vielzahl von Benutzerkonten bearbeitet werden. Es
kann dabei leicht passieren, dass ein Benutzer vergessen wird.
Die Mächtigkeit dieses Verfahrens ist direkt von den einzelnen Zugriffsrech-

ten abhängig: Je feingranularer die einzelnen Rechte unterteilt werden, desto
präziser lassen sich die Zugriffsrechte vergeben. Im Gegensatz zu den Rechtele-

35

4. Autorisierung

veln (Abschnitt 4.2) können auch Strukturen umgesetzt werden, bei denen sich
die einzelnen Funktionen nicht in eine Rangfolge unterteilen lassen. Die Zu-
griffsrechte sollten jedoch nicht zu differenziert unterteilt sein. Je mehr Rechte
im System existieren, desto höher ist der Konfigurationsaufwand und die Feh-
leranfälligkeit.

4.4. Vergabe von Rechtegruppen an Nutzer

Rechtegruppen erweitern das in Abschnitt 4.3 vorgestellte Verfahren um eine
Bündelung von Zugriffsrechten. Anstatt die Zugriffsrechte direkt an Nutzer
zu verteilen, werden die Rechte zu einer Rechtegruppe zusammengefasst und
diese Rechtegruppe dem Nutzer zugewiesen. Dies erleichtert es, die Zugriffs-
rechte für eine Vielzahl von Benutzern gleichzeitig anzupassen und umgeht
die oberhalb beschriebene Problematik des Vergessens einzelner Nutzer. Mit
dieser Verbesserung geht jedoch eine höhere Komplexität der technischen Um-
setzung einher. Es ist eine zusätzliche Tabelle für die Gruppen erforderlich
und die „Darf“-Relation besteht nicht mehr zwischen Nutzer und Berechti-
gung, sondern zwischen Gruppe und Berechtigung. Stattdessen muss eine neue
1:n-Relation „Mitglied von“ zwischen Nutzer und Gruppe geschaffen werden.
Auf administrativer Seite werden die Einstellungen etwas intransparenter: Es
ist nicht mehr direkt ersichtlich, welche einzelnen Rechte ein Nutzer hat, man
muss dazu wissen, was für Rechte die jeweilige Gruppe besitzt.
Grundsätzlich ist dieses Verfahren aber gleichmächtig zu der direkten Verga-

be von Rechten: Wenn man eine Rechtegruppe pro Nutzer anlegt, dann ist das
Verfahren praktisch identisch zu dem aus Abschnitt 4.3. Umgekehrt lässt sich
jede unterschiedliche Kombination an Rechten als Benutzergruppe darstellen
und einem Nutzer zuordnen.

4.5. Vergabe mehrerer Rechtegruppen an Nutzer

Die Vergabe mehrerer Rechtegruppen an Nutzer ist eine direkte Erweiterung
des vorherigen Verfahrens: Die „Mitglied von“-Relation wird zu einer n:n-
Relation. Durch die Vergabe mehrerer Rechtegruppen steigt die Mächtigkeit
auch dieses Verfahrens nicht an. Die Vergabe nur einer Rechtegruppe ist ein
Spezialfall der Vergabe mehrerer Rechtegruppen, umgekehrt kann man für je-

36

4.6. Wahl der Autorisierungsstrategie

de erdenkliche Kombination von Gruppen (alle Elemente der Potenzmenge)
eine einzelne Gruppe anlegen, welche das Resultat der Kombination darstellt.
Genauso wie die Vergabe von Rechtegruppen die Vergabe einzelner Rechte

flexibler und potentiell weniger aufwändig macht, macht die Vergabe mehrerer
Rechtegruppe die Vergabe von Rechtegruppen flexibler und potentiell weniger
aufwändig. Hier treffen aber die gleichen Nachteile zu: Durch die Erhöhung der
Flexibilität wird das System intransparenter. Der Administrator muss nicht
nur wissen, welche Rechte in einer einzelnen Gruppe vergeben sind, sondern
muss die Rechte aller vergebenen Gruppen im Detail kennen.
Auf technischer Seite stellt sich bei der Vergabe mehrerer Rechtegruppen die

Problematik des Zusammenführens. Ein einzelnes Recht kann in einer Vielzahl
von Gruppen definiert sein. Wenn ein Recht nicht ausschließlich ein boolescher
Wert ist (beispielsweise „Maximaler Speicherplatz“ in einer Cloud-Software),
dann können potentiell widersprüchliche Rechte in den Gruppen definiert sein.
Es muss also für jedes Recht genau definiert werden, was das Resultat ist, wenn
die Rechte der Gruppen eines Nutzers einander widersprechen.
Dieses Verfahren, üblicherweise als Role-based access control (RBAC) be-

kannt [FK92], ist aufgrund seiner Flexibilität weit verbreitet. So wird es bei-
spielsweise in abgewandelter Form für die Dateirechte von Unixoiden Betriebs-
systemen verwendet: Gruppen können drei verschiedene Rechte pro Datei ver-
geben werden. Benutzer können einer Vielzahl von Gruppen angehören und
besitzen das Recht, wenn eine der Gruppen das Recht besitzt. Zusätzlich ist
es möglich, spezifisch für den Besitzer einer Datei unterschiedliche Rechte zu
definieren.

4.6. Wahl der Autorisierungsstrategie

Die in Abschnitt 4.1 und 4.2 beschriebenen Strategien sind für die in dieser Ar-
beit erweiterte Anwendung fitnessKOMPLEX, ein umfangreicher Fitnesstra-
cker und -planer, unzureichend. Sportübungen sollten nur von ausgebildeten
und vom Administrator explizit berechtigten Trainern angelegt werden kön-
nen. Die Übungen von Laien könnten die Gesundheit der Nutzer gefährden.
Trainer sind aber nicht notwendigerweise im Unternehmen angestellt und soll-
ten daher keinen Zugriff auf die Oberfläche für die Kundenbetreuung haben.
Die Kundenbetreuung wird umgekehrt aber nicht notwendigerweise eine Trai-

37

4. Autorisierung

nerausbildung besitzen. Ebenso wäre es denkbar, bestimmte Funktionen der
Anwendung nur gegen eine zusätzliche monatliche Gebühr zur Verfügung zu
stellen. Wenn es mehr als eine dieser Funktionen gibt, dann sind auch hier die
Zugriffsrechte keine Teilmengen voneinander.
Die anderen drei Verfahren sind, wie oberhalb festgestellt, gleichmächtig

und alle in der Lage die Rechtestrukturen abzubilden. Dennoch ist nur eines
der Verfahren wirklich sinnvoll: Die Pflege von Rechten, die direkt an einzelne
Nutzer vergeben werden, ist mit der bereits jetzt abzusehenden Komplexität
der Anwendung und den erwarteten Nutzerzahlen inpraktikabel. Die Verga-
be einzelner Gruppen wäre denkbar, wenn die Anwendung ausschließlich von
Nutzern mit einem klar abgegrenzten Aufgabengebiet genutzt wird. Sollten
die oberhalb beschriebenen kostenpflichtigen Add-ons für die Mitgliedschaft
umgesetzt werden, so wären exponentiell viele Gruppen erforderlich, um alle
Kombinationen darzustellen.
Nachdem sich vier der fünf vorgestellten Verfahren für den geplanten Ein-

satzzweck als untauglich erwiesen haben, wird deutlich, dass es sich anbietet
direkt auf die flexible Vergabe mehrerer Rechtegruppen an Nutzer zurückzu-
greifen (Abschnitt 4.5), da diese keine offenkundigen Nachteile besitzt. Dieses
System ist zwar technisch am aufwändigsten umzusetzen und möglicherweise
für den Administrator auch am schwierigsten zu erlernen, dafür ist die Pflege
der Zugriffsrechte langfristig am übersichtlichsten, sofern sinnvolle Bezeich-
nungen für die Benutzergruppen gewählt und die einzelnen Zugriffsrechte lo-
gisch gruppiert an diese Gruppen vergeben werden („Trainer“, „Kundenbetreu-
ung“, „Add-on: Werbefrei“, „Add-on: Einzelsitzung“). Nachfolgend soll daher
die technische Seite der Rechteprüfung, unter Verwendung dieses Verfahrens,
näher beleuchtet werden.

4.7. Umsetzung der gewählten Strategie

Die notwendigen Änderungen an der SQL-Datenbank folgen direkt aus der
textuellen Beschreibung: Es wird jeweils eine Tabelle für Rechte (Permission)
und Rechtegruppen (Permissiongroup) angelegt. Dazu kommen noch zwei
Relationstabellen, um die Rechte mit Rechtegruppen (PermissionPermission
group) und die Rechtegruppen mit Nutzern (PermissiongroupPerson) zu ver-
knüpfen (Abbildung 4.1).

38

4.7. Umsetzung der gewählten Strategie

Abbildung 4.1.: Datenbankschema mit den notwendigen Änderungen für Autori-
sierung mittels mehrerer Rechtegruppen pro Nutzer.

Innerhalb der Anwendung werden bei der Prüfung eines Rechtes zuerst der
Typ und der Basiswert (default_value) ermittelt. Anschließend werden die
Werte aller Gruppen des Nutzers gelesen. Der Basiswert und die Werte der
Gruppen werden zur Ermittlung des Resultats abhängig vom Typ des Rechts
zusammengefügt. In der Beispielimplementierung existiert lediglich der Typ
boolean für boolesche Werte. Der resultierende Wert ist true, wenn der Ba-
siswert oder der Wert mindestens einer Gruppe true ist und sonst false.

Algorithmus 4.1 Zusammenführung der Einzelwerte von Zugriffsrechten des
Typs boolean.

R← default_value
for all value ∈ group_values do

R← R or value
end for
return R

Für einen fiktiven Typ number, beispielsweise für eine maximale Anzahl von
etwas, könnte das Resultat entweder der höchste Einzelwert oder die Summe
aller Einzelwerte sein. Ersteres wird in den meisten Fällen die intuitivere Wahl
sein.
Zur Umsetzung der eingangs beschriebenen dynamischen Rechte wäre es

denkbar die Permission-Tabelle um eine Spalte is_dynamic zu erweitern, die
bei positivem Wert das Recht vor dem Administrator verbirgt. Wenn ein der-
artiges dynamisches Recht erzeugt wird, fügt die Anwendung dieses mit einem
generischen Bezeichner wie beispielsweise can_view_profile_123 mit „Nicht
erlaubt“ als Basiswert in die Tabelle ein. 123 bezeichnet hier den Primärschlüs-

39

4. Autorisierung

sel der Nutzertabelle. Damit ein Nutzer dieses Recht auch an andere Nutzer
vergeben kann, wird zusätzlich eine Rechtegruppe angelegt werden, welche
ebenfalls vor dem Administrator verborgen wird. Der Bezeichner der Grup-
pe ist beliebig, könnte der Einfachkeit halber identisch mit dem des Rechts
sein. Dieser Gruppe wird das Recht mit dem Wert „Erlaubt“ zugewiesen. Der
Nutzer könnte anschließend über eine simple Eingabemaske die Mitglieder die-
ser Gruppe konfigurieren und somit entscheiden, wer sein Profil aufrufen darf.
Beim Aufruf eines Profils wird dann der konstante Teil des Bezeichners mit
dem jeweiligen Primärschlüssel des aufgerufenen Profils konkateniert und an-
schließend die Funktion zur Prüfung des Rechts aufgerufen.

40

5. Fazit und Ausblick

Die Integration einer Mehrfaktorauthentifizierung ist mit geringem Aufwand
auch in bestehende Systeme möglich und erhöht die Sicherheit von Benutzer-
konten potentiell deutlich. Es ist jedoch nur mit einer Integration auf tech-
nischer Basis noch nicht getan. In Abschnitt 2.4 wurde bereits deutlich, dass
auch die Mitarbeiter der Nutzerbetreuung entsprechend geschult werden müs-
sen, damit die Sicherheit des Systems nicht ausgehebelt wird. Der menschliche
Faktor ist, wie auch in der Einleitung festgestellt [Uni16], noch immer eine
der größten Sicherheitslücken. Damit einhergehend muss die User Experience
bei der Verwendung der Mehrfaktorauthentifierung so gestaltet sein, dass die
zusätzliche Authentifizierung dem Benutzer nicht unverhältnismäßig zur Last
fällt oder er zudem den Mehrwert durch die Verwendung erkennt. Andernfalls
ist die Wahrscheinlichkeit hoch, dass der Benutzer die Mehrfaktorauthenti-
fizierung wieder deaktiviert - oder gar nicht erst aktiviert. U2F ist in der
Anschaffung mit Kosten verbunden, damit ist die Hürde für die erstmalige
Verwendung relativ hoch. Dafür ist die spätere Nutzung sehr bequem, denn es
muss nur ein Knopf an der Smartcard betätigt werden. TOTP hingegen ist für
viele Menschen leicht zu nutzen, da ein großer Teil der Bevölkerung bereits ein
Smartphone besitzt. Es muss aber bei jeder Authentifizierung das Smartpho-
ne genommen, entsperrt, die Anwendung gestartet und das Einmalkennwort
eingegeben werden. Ein Anbieter sollte also mehrere sichere Verfahren zur Au-
thentifizierung anbieten, um dem Nutzer verschiedene Auswahlmöglichkeiten
zu geben.
Auf technischer Seite muss regelmäßig geprüft werden, ob die umgesetz-

ten Verfahren noch sicher sind oder anderfalls mittelfristig entfernt werden.
Dabei ist zu diskutieren, wie man mit Nutzern verfährt, die ausschließlich un-
sichere Verfahren mit ihrem Konto verknüpft haben. Auch ist die Sicherheit
des Gesamtsystems nicht zu vernachlässigen. Die sicherste Mehrfaktorauthen-
tifizierung ist nutzlos, wenn die SQL-Datenbank mit allen Nutzerdaten ohne
Authentifizierung für jedermann zugänglich ist. Nachfolgend finden sich da-

41

5. Fazit und Ausblick

her Ansätze zur weiteren Erhöhung des Sicherheitsniveaus durch zusätzliche
Maßnahmen sowie zur Verbesserung und dauerhaften Pflege des bereits Um-
gesetzten.

5.1. Zusätzliches Härten des Systems
Abhängig von dem Wirtschaftssektor in dem sich die Anwendung befindet,
kann es als Dienstanbieter sinnvoll sein noch weitere Maßnahmen zu ergreifen,
um die Nutzerdaten zu schützen. Die Server einer Anwendung im Finanzsektor
sollten keine virtualisierten Server bei einem Cloud-Anbieter sein, sondern sich
direkt auf dem Grundstück des Betreibers befinden und von einem speziell
ausgebildeten Sicherheitsdienst überwacht werden. Ebenso sollte hier auf eine
Verschlüsselung der Festplatten aller beteiligten Server gesetzt werden.
Eine möglichst lückenlose Protokollierung aller Zugriffe ist auch in Bezug auf

die öffentliche Wahrnehmung ein nicht zu unterschätzender Faktor. Im Falle
eines Datendiebstahls ist es für betroffene Nutzer beruhigender und transpa-
renter zu erfahren, dass die Ursache und alle betroffenen Informationen prä-
zise ermittelt werden konnten, der Fehler behoben wurde und dadurch auch
zukünftig keine Gefahr mehr darstellt.
Bevor sich jedoch Gedanken über spezialisierte Abwehrmechanismen ge-

macht werden, muss die Basispflege der eingesetzten Systeme sichergestellt
werden. Wie auch beim heimischen Computer ist die regelmäßige Aktuali-
sierung aller eingesetzten Software-Komponenten essentiell. Auch sollten die
Entwickler geschult sein gängige Sicherheitslücken in der selbst entwickelten
Anwendung zu vermeiden. Eine Liste gängiger Sicherheitslücken wird unter
der Bezeichnung ‘Top 10 Project’ vom Open Web Application Security Pro-
ject (OWASP) herausgegeben [Opea].

5.2. Verbesserung der Beispielimplementierung
In der Beispielimplementierung gibt es noch einige wenige unrunde Stellen, die
für die produktive Verwendung verbessert werden sollten:

1. An erster Stelle steht hier die Verwendung der statisch kompilierten
OpenSSL-Binary (Abschnitt 3.2.3). OpenSSL enthielt bereits des öf-
teren sicherheitsrelevante Programmierfehler [Opeb]. Durch das Nicht-

42

5.3. Ausblick

verwenden der durch das Betriebssystem bereitgestellten Version von
OpenSSL ist man gezwungen sich selbst über die Veröffentlichung von
neuen OpenSSL-Versionen zu informieren und gegebenenfalls die manuell
kompilierte Version von OpenSSL zu aktualisieren. Die zentral gestell-
te Version wird, wenn nötig, durch den Hersteller des Betriebssystems
aktualisiert und für alle Programme durch die Paketverwaltung zur Ver-
fügung gestellt.

2. Auch das Cookie-basierte Sitzungssystem ist für die produktive Verwen-
dung möglicherweise suboptimal: Die Anwendung hat keine Möglichkeit
Daten der Sitzung mit sofortiger Wirkung zu löschen oder zu ändern.
Ein Nutzer mit bösartigen Absichten könnte ältere Versionen des Coo-
kies aufbewahren und diese für zukünftige Anfragen erneut verwenden.
Im Kontext der Mehrfaktorauthentifizierung mittels U2F führt dies wohl
nicht zu sicherheitsrelevanten Problemen: Durch den counter-Wert wer-
den Replay-Angriffe verhindert. Es wäre aber denkbar, dass in Zukunft
weitere Informationen in dem Cookie hinterlegt werden, bei denen es
diesen Schutz nicht gibt. Mittelfristig sollte auf serverbasierte Sitzungen
umgestellt werden. Es würde ausreichen den Ordner der PHP-Sitzungen
zwischen den einzelnen Knoten zu synchronisieren oder einen Dienst wie
Redis [Fav] zur Speicherung der PHP-Sitzungen zu verwenden.

3. Der Ablauf zur Aktivierung und Authentifizierung mittels des zweiten
Faktors ist noch relativ umständlich und für unerfahrene Nutzer mögli-
cherweise unverständlich. Dieser Arbeitsablauf könnte von der Benutzer-
freundlichkeit her verbessert werden, beispielsweise indem die einzelnen
Schritte mit Screenshots oder Beschreibungen genauer erklärt und einzel-
ne Schritte, wenn möglich, zusammengefasst werden. Andernfalls könnte
es zu der zu Beginn beschriebenen Nichtverwendung der Mehrfaktorau-
thentifizierung kommen.

5.3. Ausblick

Es werden regelmäßig inhärente Probleme in Verfahren zur Authentifizierung
und Speicherung von Authentifizierungsdaten gefunden. Während es noch vor
einigen Jahren üblich war Kennwörter mittels der MD5-Hashfunktion „sicher“

43

5. Fazit und Ausblick

in der Datenbank abzulegen, gilt dies heutzutage nicht mehr als zeitgemäß. Zu-
letzt wurde im Juli 2015 im Rahmen der Password Hashing Competition eine
neue Empfehlung (Argon2i) zur sicheren Speicherung von Kennwörtern aus-
gesprochen [Aum]. Es ist jedoch wahrscheinlich, dass auch bei Argon2i durch
Kryptoanalyse Fehler im Algorithmus gefunden werden, wodurch das Ermit-
teln eines so gespeicherten Kennworts wirtschaftlich wird. Die Sicherheit von
Verfahren zur Speicherung von Kennwörtern muss also regelmäßig im Kontext
des jeweils aktuellen Stands der Technik neu geprüft und gegebenenfalls ein
besseres Verfahren entwickelt werden.
Ebenfalls ein interessanter Gegenstand für weitere Forschung ist die kenn-

wortlose Authentifizierung: Durch die Tatsache, dass Dienste kein Kennwort
verlangen, kann auch kein Kennwort bei einem Angriff entwendet werden. Auch
kann der Nutzer sein Kennwort nicht vergessen, weil er keines benötigt. Die
Authentifizierung erfolgt beispielsweise über einen nur kurze Zeit gültigen Link,
der an die hinterlegte E-Mail-Adresse gesendet wird. Verfahren, wie das mitt-
lerweile eingestellte Mozilla Persona, [Lar14] hatten zum Ziel eine kennwortlose
Authentifizierung durch Integration in den Webbrowser massentauglich zu ma-
chen.
Es wird deutlich, dass es im Bereich der Authentifizierung und Autorisierung

noch Aspekte gibt, die nicht endgültig gelöst sind und es möglicherweise auch
niemals werden. Diese wissenschaftliche Arbeit kann darauf aufgrund ihres
eigentlichen Fokus keine Antwort geben, aber lässt sie daher für zukünftige
Forschung offen.

44

A. Inhalt der beigelegten
CD-ROM

Auf der beigelegten CD-ROM finden sich, neben einer digitalen Version dieser
Arbeit, der Quelltext der in Kapitel 3 und 4.7 entwickelten Beispielimplemen-
tierung und etwaiger eingesetzter Drittbibliotheken.
Die Quelldateien sind UTF-8-kodiert und haben Unix-Zeilenenden (LF).

fitnessKOMPLEX/* Die, um Mehrfaktorauthentifizierung und Autorisierung
erweiterte, Anwendung.

fitnessKOMPLEX.diff Übersicht der Änderungen, die an der Anwendung vor-
genommen wurden. Dateien, die hier nicht aufgelistet sind, wurden un-
verändert übernommen.

fitnessKOMPLEX.tar Tar-Archiv des fitnessKOMPLEX-Ordners, damit
symbolische Verknüpfungen und Unix-Dateirechte erhalten bleiben.

LICENSE Liste der Lizenzen eingesetzter Drittbibliotheken.

openssl/* Quelltext der mitgelieferten, statisch kompilierten OpenSSL-Bina-
ry (siehe Abschnitt 3.2.3).

U2F-Testscript/* Eigenständiges Testskript für die in Abschnitt 3.3 entwi-
ckelte PHP-Klasse zur Kommunikation mit einer U2F-Smartcard. Zur
Verwendung ist ein PHP-fähiger Webserver mit TLS-Zertifikat notwen-
dig.

45

B. Einrichtung von Universal
Second Factor

Das U2F-Verfahren ist derzeit nur im Google Chrome (nativ) und Mozilla Fi-
refox (Add-on) [Chm] nutzbar. Bei Verwendung einer aktuellen Version von
Microsoft Windows sollte der Treiber für die Smartcard beim ersten Einste-
cken automatisch installiert werden. Für GNU/Linux-Systeme ist es im Regel-
fall erforderlich eine neue udev-Regel zu ergänzen, damit die Smartcard vom
Webbrowser angesteuert werden kann:

1. Herunterladen der aktuellen Regelversion von
https://github.com/Yubico/libu2f-host/blob/master/70-u2f.rules.

2. Speichern der Regel in /etc/udev/rules.d.

3. Neustart des Systems.

Zur Prüfung der Funktionsfähigkeit der Smartcard kann die U2F-Demoseite
von Yubico genutzt werden:

1. Aufruf der Demo-Seite in einem kompatiblen Webbrowser:
https://demo.yubico.com/u2f.

2. Auswahl des Reiters „Register“.

3. Eingabe von beliebigen Zugangsdaten (diese werden anschließend im
Klartext angezeigt).

4. Nach Absenden des Formulars: Betätigung des Knopfes an der Smart-
card.

5. Es sollte gezeigt werden, dass die Registrierung erfolgreich war.

47

https://github.com/Yubico/libu2f-host/blob/master/70-u2f.rules
https://demo.yubico.com/u2f

Abkürzungen

AES Advanced Encryption Standard

API Application Programming Interface

ASN.1 Abstract Syntax Notation One

CGI Common Gateway Interface

DER Distinguished Encoding Rules

ECDSA Elliptic Curve Digital Signature Algorithm

ELSTER ELektronische STeuerERklärung

FIDO Fast IDentity Online

FIPS Federal Information Processing Standard

HMAC Keyed-Hash Message Authentication Code

HOTP HMAC-Based One-Time Password Algorithm

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

IRC Internet Relay Chat

JSON JavaScript Object Notation

MAC Message Authentication Code

MD5 Message-Digest Algorithm 5

NIST National Institute of Standards and Technology

OTP One-Time Password

49

B. Einrichtung von Universal Second Factor

OWASP Open Web Application Security Project

PEM Privacy Enhanced Mail

PGP Pretty Good Privacy

PHP PHP: Hypertext Preprocessor

PIN Persönliche Identifikationsnummer

QR-Code Quick Response-Code

RBAC Role-based access control

RHEL Red Hat Enterprise Linux

SHA Secure Hash Algorithm

SIM Subscriber Identity Module

SMS Short Message Service

TAN Transaktionsnummer

TLS Transport Layer Security

TOTP Time-based One-time Password Algorithm

U2F Universal Second Factor

URL Uniform Resource Locator

50

Abbildungsverzeichnis

2.1. Ablauf der Authentifizierung mit U2F 5
2.2. Aufbau der Antwort auf einen u2f_register_request 6
2.3. Aufbau der Antwort auf einen u2f_sign_request 8
2.4. Ansicht der Einmalkennwörter in Google Authenticator 13
2.5. QR-Code, der das TOTP-Shared Secret enthält 13

3.1. Datenbankschema für Mehrfaktor-Authentifizierung 24

4.1. Datenbankschema für Autorisierung mittels mehrerer Gruppen . 39

51

Algorithmenverzeichnis

2.1. HMAC-based One-time Password Algorithm 14
2.2. Time-based One-time Password Algorithm 14

4.1. Zusammenführung der Einzelwerte von Zugriffsrechten 39

53

Listingverzeichnis

3.1. Aufbau der RegisterRequest-Struktur 26
3.2. Aufbau der RegisterResponse-Struktur 26
3.3. Aufbau der ClientData-Struktur 27
3.4. PEM-Armoring von Zertifikaten 28
3.5. Aufbau der SignResponse-Struktur 29
3.6. PEM-Armoring von öffentlichen Schlüsseln 30

55

Literatur

[129] 129.69.226.230. Operator. url: http://minecraft-de.gamepe
dia.com/index.php?title=Operator&diff=273711&oldid=
216053 (besucht am 24. 11. 2016).

[Arc16] Scott Arciszewski. Updated constraint on OpenSSL. Okt. 2016.
url: https://github.com/defuse/php- encryption/pull/
309#issuecomment-253472651 (besucht am 17. 11. 2016).

[Aum] Jean-Philippe Aumasson. Password Hashing Competition. url:
https://password-hashing.net/ (besucht am 05. 12. 2016).

[BBL15] Dirk Balfanz, Arnar Birgisson und Juan Lang. FIDO U2F Java-
script API. Mai 2015. url: https://fidoalliance.org/specs/
fido-u2f-javascript-api-ps-20150514.pdf.

[BE15] Dirk Balfanz und Jakob Ehrensvard. FIDO U2F Raw Message
Formats. Mai 2015. url: https://fidoalliance.org/specs/
fido-u2f-raw-message-formats-ps-20150514.pdf.

[BH15] Dirk Balfanz und Brad Hill. FIDO AppID and Facet Specification.
Mai 2015. url: https : / / fidoalliance . org / specs / fido -
appid-and-facets-ps-20150514.pdf.

[BL14] Daniel J. Bernstein und Tanja Lange. SafeCurves: Introduction.
Jan. 2014. url: https://safecurves.cr.yp.to/ (besucht am
12. 11. 2016).

[Chm] Paweł Chmielowski. U2F Support Add-On. url: https://addon
s.mozilla.org/en-GB/firefox/addon/u2f-support-add-on/
(besucht am 11. 11. 2016).

57

http://minecraft-de.gamepedia.com/index.php?title=Operator&diff=273711&oldid=216053
http://minecraft-de.gamepedia.com/index.php?title=Operator&diff=273711&oldid=216053
http://minecraft-de.gamepedia.com/index.php?title=Operator&diff=273711&oldid=216053
https://github.com/defuse/php-encryption/pull/309#issuecomment-253472651
https://github.com/defuse/php-encryption/pull/309#issuecomment-253472651
https://password-hashing.net/
https://fidoalliance.org/specs/fido-u2f-javascript-api-ps-20150514.pdf
https://fidoalliance.org/specs/fido-u2f-javascript-api-ps-20150514.pdf
https://fidoalliance.org/specs/fido-u2f-raw-message-formats-ps-20150514.pdf
https://fidoalliance.org/specs/fido-u2f-raw-message-formats-ps-20150514.pdf
https://fidoalliance.org/specs/fido-appid-and-facets-ps-20150514.pdf
https://fidoalliance.org/specs/fido-appid-and-facets-ps-20150514.pdf
https://safecurves.cr.yp.to/
https://addons.mozilla.org/en-GB/firefox/addon/u2f-support-add-on/
https://addons.mozilla.org/en-GB/firefox/addon/u2f-support-add-on/

Literatur

[Eye15] EyeLock Inc. EyeLock’s myris Is First and Only Iris Authenti-
cator for New FIDO Open Industry Standard. Jan. 2015. url:
http : / / www . prnewswire . com / news - releases / eyelocks -
myris-is-first-and-only-iris-authenticator-for-new-
fido-open-industry-standard-300015710.html (besucht am
11. 11. 2016).

[Fav] Nicolas Favre-Felix. PHP Session handler. url: https://github
.com/phpredis/phpredis#php-session-handler (besucht am
27. 11. 2016).

[Fed] Federal Financial Institutions Examination Council. Authentica-
tion in an Internet Banking Environment. url: https://www.
ffiec.gov/pdf/authentication_guidance.pdf.

[FID14] FIDO Alliance. FIDO 1.0 Specifications are Published and Final
Preparing for Broad Industry Adoption of Strong Authentication
in 2015. Dez. 2014. url: https://fidoalliance.org/fido-
1 . 0 - specifications - published - and - final/ (besucht am
11. 11. 2016).

[FK92] David F. Ferraiolo und D. Richard Kuhn. Role-Based Access Con-
trols. Okt. 1992. url: https://web.archive.org/web/201
60303234840 / http : / / csrc . nist . gov / groups / SNS / rbac /
documents/ferraiolo-kuhn-92.pdf (besucht am 24. 11. 2016).

[Git16] GitHub, Inc. Email replies disclose “mute the thread” token. Sep.
2016. url: https://bounty.github.com/researchers/h8rry.
html (besucht am 11. 11. 2016).

[Goo] Google Inc. Google Authenticator. url: https://play.google.
com/store/apps/details?id=com.google.android.apps.
authenticator2.

[Goo14] Google Inc. u2f-api.js. 2014. url: https://github.com/google/
u2f- ref- code/blob/80a30a38178a5a277c4cc13df36c82671d
85d881 / u2f - gae - demo / war / js / u2f - api . js (besucht am
17. 11. 2016).

[Goo15] Google Inc. Key Uri Format. 2015. url: https://github.com/g
oogle/google-authenticator/wiki/Key-Uri-Format (besucht
am 11. 11. 2016).

58

http://www.prnewswire.com/news-releases/eyelocks-myris-is-first-and-only-iris-authenticator-for-new-fido-open-industry-standard-300015710.html
http://www.prnewswire.com/news-releases/eyelocks-myris-is-first-and-only-iris-authenticator-for-new-fido-open-industry-standard-300015710.html
http://www.prnewswire.com/news-releases/eyelocks-myris-is-first-and-only-iris-authenticator-for-new-fido-open-industry-standard-300015710.html
https://github.com/phpredis/phpredis#php-session-handler
https://github.com/phpredis/phpredis#php-session-handler
https://www.ffiec.gov/pdf/authentication_guidance.pdf
https://www.ffiec.gov/pdf/authentication_guidance.pdf
https://fidoalliance.org/fido-1.0-specifications-published-and-final/
https://fidoalliance.org/fido-1.0-specifications-published-and-final/
https://web.archive.org/web/20160303234840/http://csrc.nist.gov/groups/SNS/rbac/documents/ferraiolo-kuhn-92.pdf
https://web.archive.org/web/20160303234840/http://csrc.nist.gov/groups/SNS/rbac/documents/ferraiolo-kuhn-92.pdf
https://web.archive.org/web/20160303234840/http://csrc.nist.gov/groups/SNS/rbac/documents/ferraiolo-kuhn-92.pdf
https://bounty.github.com/researchers/h8rry.html
https://bounty.github.com/researchers/h8rry.html
https://play.google.com/store/apps/details?id=com.google.android.apps.authenticator2
https://play.google.com/store/apps/details?id=com.google.android.apps.authenticator2
https://play.google.com/store/apps/details?id=com.google.android.apps.authenticator2
https://github.com/google/u2f-ref-code/blob/80a30a38178a5a277c4cc13df36c82671d85d881/u2f-gae-demo/war/js/u2f-api.js
https://github.com/google/u2f-ref-code/blob/80a30a38178a5a277c4cc13df36c82671d85d881/u2f-gae-demo/war/js/u2f-api.js
https://github.com/google/u2f-ref-code/blob/80a30a38178a5a277c4cc13df36c82671d85d881/u2f-gae-demo/war/js/u2f-api.js
https://github.com/google/google-authenticator/wiki/Key-Uri-Format
https://github.com/google/google-authenticator/wiki/Key-Uri-Format

Literatur

[HIBP] ’;–have i been pwned? url: https://haveibeenpwned.com/ (be-
sucht am 11. 11. 2016).

[Hor] Taylor Hornby. php-encryption. url: https://github.com/def
use/php-encryption/tree/v1.2.1 (besucht am 14. 11. 2016).

[Lar14] Frederic Lardinois. Mozilla Stops Developing Its Persona Sign-
In System Due To Low Adoption. März 2014. url: https://
techcrunch.com/2014/03/08/mozilla-stops-developing-
its-persona-sign-in-system-because-of-low-adoption/
(besucht am 05. 12. 2016).

[Mar] Devin Martin. KeeOtp. url: http://keepass.info/plugins.
html#keeotp (besucht am 11. 11. 2016).

[MI16] Yusuf Motara und Barry Irwin. “SHA-1 and the Strict Avalanche
Criterion”. In: CoRR abs/1609.00616 (2016). url: http://arxi
v.org/abs/1609.00616.

[Nat13] National Institute of Standards and Technology. Digital Signature
Standard (DSS). Juli 2013. url: http://nvlpubs.nist.gov/ni
stpubs/FIPS/NIST.FIPS.186-4.pdf (besucht am 09. 11. 2016).

[Opea] Open Web Application Security Project. Category:OWASP Top
Ten Project. url: https://www.owasp.org/index.php/Catego
ry:OWASP_Top_Ten_Project (besucht am 03. 12. 2016).

[Opeb] OpenSSL Software Foundation. Vulnerabilities. url: https://
www.openssl.org/news/vulnerabilities.html (besucht am
27. 11. 2016).

[RFC2104] Hugo Krawczyk, Mihir Bellare und Ran Canetti. HMAC: Keyed-
Hashing for Message Authentication. RFC 2104. RFC Editor, Feb.
1997. url: http://www.rfc-editor.org/rfc/rfc2104.txt.

[RFC2617] John Franks u. a. HTTP Authentication: Basic and Digest Access
Authentication. RFC 2617. RFC Editor, Juni 1999. url: http:
//www.rfc-editor.org/rfc/rfc2617.txt.

[RFC3174] D. Eastlake und P. Jones. US Secure Hash Algorithm 1 (SHA1).
RFC 3174. RFC Editor, Sep. 2001. url: http : / / www . rfc -
editor.org/rfc/rfc3174.txt.

59

https://haveibeenpwned.com/
https://github.com/defuse/php-encryption/tree/v1.2.1
https://github.com/defuse/php-encryption/tree/v1.2.1
https://techcrunch.com/2014/03/08/mozilla-stops-developing-its-persona-sign-in-system-because-of-low-adoption/
https://techcrunch.com/2014/03/08/mozilla-stops-developing-its-persona-sign-in-system-because-of-low-adoption/
https://techcrunch.com/2014/03/08/mozilla-stops-developing-its-persona-sign-in-system-because-of-low-adoption/
http://keepass.info/plugins.html#keeotp
http://keepass.info/plugins.html#keeotp
http://arxiv.org/abs/1609.00616
http://arxiv.org/abs/1609.00616
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.openssl.org/news/vulnerabilities.html
https://www.openssl.org/news/vulnerabilities.html
http://www.rfc-editor.org/rfc/rfc2104.txt
http://www.rfc-editor.org/rfc/rfc2617.txt
http://www.rfc-editor.org/rfc/rfc2617.txt
http://www.rfc-editor.org/rfc/rfc3174.txt
http://www.rfc-editor.org/rfc/rfc3174.txt

Literatur

[RFC4226] D. M’Raihi u. a. HOTP: An HMAC-Based One-Time Password
Algorithm. RFC 4226. RFC Editor, Dez. 2005. url: http: //
www.rfc-editor.org/rfc/rfc4226.txt.

[RFC4648] S. Josefsson. The Base16, Base32, and Base64 Data Encodings.
RFC 4648. RFC Editor, Okt. 2006. url: http : / / www . rfc -
editor.org/rfc/rfc4648.txt.

[RFC5280] D. Cooper u. a. Internet X.509 Public Key Infrastructure Certi-
ficate and Certificate Revocation List (CRL) Profile. RFC 5280.
RFC Editor, Mai 2008. url: http://www.rfc- editor.org/
rfc/rfc5280.txt.

[RFC5480] S. Turner u. a. Elliptic Curve Cryptography Subject Public Key
Information. RFC 5480. RFC Editor, März 2009. url: http :
//www.rfc-editor.org/rfc/rfc5480.txt.

[RFC6238] D. M’Raihi u. a. TOTP: Time-Based One-Time Password Algo-
rithm. RFC 6238. RFC Editor, Mai 2011. url: http://www.rfc-
editor.org/rfc/rfc6238.txt.

[RFC6265] A. Barth. HTTP State Management Mechanism. RFC 6265. RFC
Editor, Apr. 2011. url: http://www.rfc- editor.org/rfc/
rfc6265.txt.

[San] Salvatore Sanfilippo. Redis Security. url: http://redis.io/
topics/security (besucht am 24. 11. 2016).

[sec] secunet Security Networks AG. Sicherheitsstick für ELSTER. url:
https://www.sicherheitsstick.de/ (besucht am 11. 11. 2016).

[Sri+15] Sampath Srinivas u. a. Universal 2nd Factor (U2F) Overview. Mai
2015. url: https : / / fidoalliance . org / specs / fido - u2f -
overview-ps-20150514.pdf.

[The] The PHP Group. Session Handling. url: http : / / php . net /
manual/en/book.session.php (besucht am 14. 11. 2016).

[Uni16] University of Luxembourg. Social engineering: password in ex-
change for chocolate. Mai 2016. url: http://wwwen.uni.lu/uni
versity/news/latest_news/social_engineering_password_
in_exchange_for_chocolate (besucht am 11. 11. 2016).

60

http://www.rfc-editor.org/rfc/rfc4226.txt
http://www.rfc-editor.org/rfc/rfc4226.txt
http://www.rfc-editor.org/rfc/rfc4648.txt
http://www.rfc-editor.org/rfc/rfc4648.txt
http://www.rfc-editor.org/rfc/rfc5280.txt
http://www.rfc-editor.org/rfc/rfc5280.txt
http://www.rfc-editor.org/rfc/rfc5480.txt
http://www.rfc-editor.org/rfc/rfc5480.txt
http://www.rfc-editor.org/rfc/rfc6238.txt
http://www.rfc-editor.org/rfc/rfc6238.txt
http://www.rfc-editor.org/rfc/rfc6265.txt
http://www.rfc-editor.org/rfc/rfc6265.txt
http://redis.io/topics/security
http://redis.io/topics/security
https://www.sicherheitsstick.de/
https://fidoalliance.org/specs/fido-u2f-overview-ps-20150514.pdf
https://fidoalliance.org/specs/fido-u2f-overview-ps-20150514.pdf
http://php.net/manual/en/book.session.php
http://php.net/manual/en/book.session.php
http://wwwen.uni.lu/university/news/latest_news/social_engineering_password_in_exchange_for_chocolate
http://wwwen.uni.lu/university/news/latest_news/social_engineering_password_in_exchange_for_chocolate
http://wwwen.uni.lu/university/news/latest_news/social_engineering_password_in_exchange_for_chocolate

Literatur

[X.680] International Telecommunication Union. Information Technology
— Abstract Syntax Notation One (ASN.1): Specification of Basic
Notation. ITU-T Recommendation X.680. Juli 2002. url: http:
//www.itu.int/ITU- T/studygroups/com17/languages/X.
680-0207.pdf.

[X.690] International Telecommunication Union. Information Technolo-
gy — ASN.1 Encoding Rules — Specification of Basic Encoding
Rules (BER), Canonical Encoding Rules (CER), and Distinguis-
hed Encoding Rules (DER). ITU-T Recommendation X.690. Juli
2002. url: http://www.itu.int/ITU-T/studygroups/com17/
languages/X.690-0207.pdf.

[Yub] Yubico AB. U2F — FIDO Universal 2nd Factor Authentication.
url: https : / / www . yubico . com / about / background / fido/
(besucht am 11. 11. 2016).

61

http://www.itu.int/ITU-T/studygroups/com17/languages/X.680-0207.pdf
http://www.itu.int/ITU-T/studygroups/com17/languages/X.680-0207.pdf
http://www.itu.int/ITU-T/studygroups/com17/languages/X.680-0207.pdf
http://www.itu.int/ITU-T/studygroups/com17/languages/X.690-0207.pdf
http://www.itu.int/ITU-T/studygroups/com17/languages/X.690-0207.pdf
https://www.yubico.com/about/background/fido/

Eidesstattliche Erklärung

Hiermit versichere ich, dass die vorliegende Arbeit über secureFIT - Mehrfak-
tor-Authentifizierung und Autorisierung selbstständig verfasst worden ist, dass
keine anderen Quellen und Hilfsmittel als die angegebenen benutzt worden sind
und dass die Stellen der Arbeit, die anderen Werken – auch elektronischen Me-
dien – dem Wortlaut oder Sinn nach entnommen wurden, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht worden sind.

Tim Düsterhus, Sassenberg, 12. Dezember 2016

Ich erkläre mich mit einem Abgleich der Arbeit mit anderen Texten zwecks
Auffindung von Übereinstimmungen sowie mit einer zu diesem Zweck vorzu-
nehmenden Speicherung der Arbeit in eine Datenbank einverstanden.

Tim Düsterhus, Sassenberg, 12. Dezember 2016

63

	Einleitung
	Zweifaktor-Authentifizierung
	Einführung
	Universal Second Factor
	Voraussetzungen
	Funktionsweise
	Analyse des Verfahrens
	Vergleich mit anderen Smartcard-Verfahren

	Time-based One-time Password Algorithm
	Voraussetzungen
	Funktionsweise
	Analyse des Verfahrens
	Vergleich mit anderen Einmalkennwort-Verfahren

	Verlust des zweiten Faktors

	Implementation von Universal Second Factor
	Vorstellung des bestehenden Systems
	Voraussetzungen schaffen
	Sitzungssystem
	Datenbanktabellen
	OpenSSL

	Kommunikation mit der Smartcard
	__construct
	generateRegisterRequest
	verifyRegisterResponse
	generateSignRequest
	verifySignResponse

	Aktivierung des zweiten Faktors
	Überprüfung des zweiten Faktors
	Fazit

	Autorisierung
	Keine gesonderte Autorisierung
	Rechtelevel
	Vergabe einzelner Rechte an Nutzer
	Vergabe von Rechtegruppen an Nutzer
	Vergabe mehrerer Rechtegruppen an Nutzer
	Wahl der Autorisierungsstrategie
	Umsetzung der gewählten Strategie

	Fazit und Ausblick
	Zusätzliches Härten des Systems
	Verbesserung der Beispielimplementierung
	Ausblick

	Inhalt der beigelegten CD-ROM
	Einrichtung von Universal Second Factor

