|

WILHELMS-UNIVERSITAT

r——————— TV e

SECUREFIT

MEHRFAKTOR-AUTHENTIFIZIERUNG UND
AUTORISIERUNG

BACHELORARBEIT
zur Erlangung des akademischen Grades
BACHELOR OF SCIENCE

Vorgelegt von:

Tim Dusterhus

Thema gestellt von:

Dr. Dietmar Lammers

Arbeit betreut durch:

Dr. Dietmar Lammers

Sassenberg, 12. Dezember 2016

Abstract

Diese Arbeit stellt ein Konzept fiir eine sichere Zugriffsverwaltung in einem
zentral verwalteten Mehrbenutzersystem mit unterschiedlichen Kompetenzen
einzelner Nutzer vor. Dazu werden zwei standardisierte Verfahren zur Mehrfak-
tor-Authentifizierung im Detail untersucht und vorgestellt, wie dadurch der Zu-
griff auf Konten einzelner Nutzer besonders geschiitzt werden kann. Weiterhin
wird untersucht, wie nach erfolgter Authentifizierung des Nutzers sichergestellt
werden kann, dass jeweils nur berechtigte Nutzer die einzelnen Funktionen des
Systems nutzen kénnen.

Viele Systeme besitzen bereits eine bestehende Einfaktor-Authentifizierung
und sind nicht von Grund auf mit dem Konzept einer Zweifaktor-Authentifizie-
rung entwickelt worden. Daher zeigt diese Arbeit anhand einer beispielhaften
Implementation eines der vorgestellten Verfahren, wie man ein derartiges Zwei-
faktor-System nachtriglich in seine bestehende Authentifizierung integrieren
kann, ohne dabei groe Anderungen an den bereits erprobten Komponenten

vornehmen zu miissen.

1ii

Inhaltsverzeichnis

(1. Einleitung]

[2. Zweifaktor-Authentifizierung]
[2.1. Einfuhrungl L

[2.2.1. Voraussetzungen|

[2.2.3. Analyse des Verfahrens|

[2.2.4. Vergleich mit anderen Smartcard-Verfahren|

[2.3. Time-based One-time Password Algorithm|

[2.3.1. Voraussetzungen|

[2.3.3. Analyse des Verfahrens|

[2.3.4. Vergleich mit anderen Einmalkennwort-Verfahren|

[3. Implementation von Universal Second Factor|

[3.1. Vorstellung des bestehenden Systems|

[3.2. Voraussetzungen schaffen|.

[3.2.1. Sitzungssystem|

[3.2.3. OpenSSL|
3.3. Kommunikation mit der Smartcardl

[5.0.1. construct|o

[5.0.2. generateRegisterRequest|

[5.0.0. verifyRegisterResponse[.

[3.9.4. generateSignRequest|

[5.0.0. verifySignResponse|.

[3.4. Aktivierung des zweiten Faktors

Inhaltsverzeichnis

[3.5. Uberpriifung des zweiten Faktors| 31
BO _TFazill 32
[4. Autorisierung] 33
[4.1. Keine gesonderte Autorisierung| 34
[4.2. Rechtelevell 34
[4.3. Vergabe einzelner Rechte an Nutzer| 35
[4.4. Vergabe von Rechtegruppen an Nutzer| 36
[4.5. Vergabe mehrerer Rechtegruppen an Nutzer| 36
[4.6. Wahl der Autorisierungsstrategie| 37
[4.7. Umsetzung der gewahlten Strategie] 38

0. Fazit und Ausblick|

[A. Tnhalt der beigelegten CD-ROM] 45

[B. Einrichtung von Universal Second Factor] 47

vi

1. Einleitung

Kennworter und Pins sind aus dem Leben des 21. Jahrhunderts nicht mehr
wegzudenken. Bevor das Internet massentauglich wurde, besafl der Durch-
schnittsbiirger seine EC-Karte, SIMHKarte und moglicherweise einige wenige
Kennworter. Heutzutage benotigt man fiir jeden Online-Shop, jedes soziale
Netzwerk, fiir seine E-Mail-Adressen und fiir die zentrale Nutzerkennung an
der Universitat ein gesondertes Benutzerkonto. Und fiir jedes dieser Konten
sollte man ein getrenntes Kennwort wéhlen. Die Realitat sieht aber anders
aus: Viele Menschen besitzen nur ein einziges Kennwort, das sie fiir jedes ih-
rer Benutzerkonten verwenden. Sobald ein Angreifer an ebenjenes Kennwort

gelangt ist, stehen ihm alle Tiiren zum digitalen Leben des Betroffenen offen.

Ein Angreifer kann iiber eine Vielzahl von Maoglichkeiten an Kennworter
gelangen. Eine simple Moglichkeit ist es einfach zu fragen: Viele Menschen
verraten ihr Passwort fir eine einfache Gegenleistung [Unil6]. Eine andere
Moglichkeit sind Sicherheitsliicken in der Software von Online-Diensten. So
listet die Internetseite ,’ ;--have i been pwned?' beispielsweise rund 1,8 Mil-
liarden Nutzerkonten auf 152 unterschiedlichen Portalen, deren private Daten
ungewollt an die Offentlichkeit gelangt sind [HIBP]. Beide dieser Methoden
stiitzen sich darauf, dass der Betroffene leichtfertig mit seinen Kennwortern
umgegangen ist, aber auch technisch versierte Menschen konnen beispielsweise

durch Schadsoftware von einem Kennwort-Diebstahl betroffen sein.

Es ist also leicht zu sehen, dass nur Kennworter nicht ausreichen, um wichti-
ge Benutzerkonten zu schiitzen. Immer mehr Dienste sind sich dieser Tatsache
bewusst und bieten daher einen Zweifaktor-Login an. Wenn ein Nutzer sein
Konto mit dieser Funktion speziell schiitzt, dann ist das Kennwort allein nicht
mehr ausreichend, um in das Konto und somit an die personlichen Daten des
Nutzers zu gelangen. Stattdessen muss beispielsweise ein iiber empfange-
ner Code oder ein Einmalkennwort von einer zuvor erhaltenen Liste eingegeben

werden. Bekannt ist dieses Verfahren vom Online-Banking: Neben der [PIN]ist

1. Einleitung

fir jede Transaktion zusatzlich eine neue Transaktionsnummer (TAN]) erfor-
derlich.

Die sichere Authentifizierung des Benutzers ist jedoch nicht ausreichend,
um sicherzustellen, dass der Nutzer lediglich auf Informationen und Funktio-
nen Zugriff erhalt, die fir ihn bestimmt sind. Es muss beispielsweise sicherge-
stellt sein, dass ein Benutzer nicht in der Lage ist Informationen anderer Nut-
zer zu verandern oder einzusehen, ohne dafiir speziell von einem Administra-
tor berechtigt worden zu sein. Im Gegensatz zu fehlerhafter Authentifizierung
sind Probleme in der Autorisierung in der Regel schwieriger zu erkennen: Die
erfolgreiche Authentifizierung mit falschem Kennwort wird schnell auffallen,
die versehentliche Veréffentlichung von sensiblen Informationen koénnte hinge-
gen an vielen Stellen passieren. Der Dienst GitHub versendete beispielsweise
Benachrichtigungs-E-Mails mit einem privatem Link zum Abbestellen dieser
Benachrichtigungen. Beim Antworten auf diese E-Mails war es moglich, dass
dieser Link in einem Zitat innerhalb der Antwort enthalten war und dadurch
verdffentlicht wurde. Die Problematik wurde so korrigiert, dass der Link in
Zukunft nur noch dem zugeordneten Nutzer zuginglich war |Git16].

Zur Losung dieses Problems soll in dieser Arbeit ein Konzept zur sicheren
Integration eines Zweifaktor-Logins in ein bestehendes Authentifizierungssys-
tem vorgestellt und zusatzlich auf technischer und administrativer Basis disku-
tiert werden, wie die sicher authentifizierten Nutzer fiir die unterschiedlichen
Funktionen der Anwendung autorisiert werden kénnen, sodass die Wahrschein-
lichkeit fiir eine Fehlkonfiguration minimiert wird.

Dazu werden in Kapitel [2] Universal Second Factor (U2E]) und Time-based
One-time Password Algorithm (TOTP) als Reprasentanten von Smartcard- be-
zichungsweise Einmalkennwort-basierten Verfahren im Detail vorgestellt und
anschlieffend in Kapitel [8] untersucht, wie das [J2E} Verfahren in die bestehen-
de Anwendung integriert werden kann. Nachdem die sichere Authentifizierung
gewahrleistet wurde, behandelt Kapitel [4] die sichere Autorisierung und stellt
unterschiedliche Autorisierungsstrategien mit ihren jeweiligen Vor- und Nach-
teilen vor. Kapitel [j] schliefit mit einem tibergreifenden Fazit und gibt zugleich
AnstoBe fiir weitere sicherheitsrelevante Uberlegungen, die als Ausgangspunkte

fiir nachfolgende Untersuchungen herangezogen werden konnen.

2. Zweifaktor-Authentifizierung

2.1. Einfiihrung

Es gibt unterschiedliche Moglichkeiten einen Nutzer eindeutig zu identifizieren,
allen Verfahren ist jedoch gemein, dass sie sich in eine von drei Kategorien

einordnen lassen [Fed, Seite 3]:

Wissen Kennworter, Private Informationen

Besitz TAN-Liste, Kryptografische Schliissel, Smartcards
Biometrie Fingerabdruck, Iris-Scan

Die Verfahren einer Kategorie teilen sich dabei aufgrund ihrer inharenten
Eigenschaften die grundsétzlichen Vor- und Nachteile. So ist es beispielsweise
trivial moglich, Wissen weiterzugeben und damit das Identifizierungsmerkmal
zu duplizieren. Es ist jedoch nahezu unmoglich, die Identifizierung durch ein
Biometrisches Merkmal an eine andere Person weiterzugeben. Dadurch ist die
Authentifizierung durch ein Biometrisches Merkmal, unter der Annahme eines
perfekt arbeitenden Systems - also eines Systems, das keine Fehler bei der
Erkennung des Merkmals macht -, sicherer als die Authentifizierung iiber ein
Kennwort.

Im Gegenzug ist es nicht moglich, ein Biometrisches Merkmal im Falle ei-
ner Kompromittierung zu verdndern, wahrend dies beispielsweise bei einem
Kennwort sehr einfach moglich ist.

Verfahren, die auf dem Besitz von etwas basieren, gehen in vielen Eigen-
schaften einen Mittelweg zwischen Wissen und Biometrie. Eine Smartcard ist
beispielsweise schwierig zu duplizieren, kann aber weiterhin an andere Perso-
nen weitergegeben werden. Der urspriingliche Besitzer verliert dabei jedoch die
Moglichkeit sich zu authentifizieren. Auch ist die Integration eines derartigen

Systems mit hoheren Kosten verbunden als die einfache Abfrage von Wissen,

2. Zweitaktor-Authentifizierung

beispielsweise muss fir jeden Mitarbeiter eine Smartcard beschafft werden, die
Kosten sind jedoch im Allgemeinen geringer als die fiir ein sicheres Biometri-
sches System.

Eine sichere Authentifizierung kombiniert also Verfahren aus unterschied-
lichen Kategorien, damit die jeweiligen Nachteile eines Verfahrens durch ein
anderes Verfahren ausgeglichen werden kénnen. Die Authentifizierung auf Ba-
sis von Wissen in Form von Kennwortern ist die am weitesten verbreitete,
da diese am einfachsten implementiert werden kann. Daher werden nachfol-
gend zwei auf Besitz basierende Verfahren vorgestellt. In Kombination mit
Kennwortern kommen dann Verfahren aus zwei Kategorien zum Einsatz. Das
[O2E} Verfahren (Kapitel ist ein Smartcard-basiertes Verfahren, der Benut-
zer authentifiziert sich iber den Besitz eines USB-Sticks. Das[TOTP} Verfahren
(Kapitel basiert auf kryptografischen Schliisseln; der Benutzer authentifi-
ziert sich iiber einen auf seinem Smartphone gespeicherten zuféllig generierten

Schliissel, mithilfe dessen Einmalkennworter generiert werden.

2.2. Universal Second Factor

Universal Second Factor ([I2F]) ist ein von der FIDO Alliance Ende 2014 verof-
fentlichtes offenes Verfahren zur Authentifizierung mittels einer Smartcard. Ziel
war es, ein einheitliches und sicheres Verfahren zur Zweifaktor-Authentifizie-
rung zu schaffen [FID14], um die Akzeptanz fiir Zweifaktor-Authentifizierung
zu erhohen. Mit dem Webbrowser Google Chrome ist das Verfahren bereits na-
tiv in einem der fithrenden Webbrowser integriert, fiir Mozilla Firefox gibt es
ein Add-on [Chm|. Weiterhin gibt es bereits eine Vielzahl kompatibler Smart-
cards unterschiedlicher Hersteller, unter anderem stand bereits einen Monat

nach Veroéffentlichung der Spezifikation ein Iris-Scanner zur Verfigung [Eyel5].

2.2.1. Voraussetzungen

Auf Seiten des Anbieters ist es notwendig, dass eine Bibliothek mit Unterstiit-
zung fiir Elliptic Curve Digital Signature Algorithm (ECDSA])-Signaturen auf
der durch das National Institute of Standards and Technology (NIST]) standar-
disierten P-256-Kurve [Nat13| Seite 100 zur Validierung der durch die Smart-

card tibermittelten Daten zur Verfiigung steht (eine verbreitete Bibliothek ist

2.2. Universal Second Factor

Device Browsear Seryer

USEMAMTEe and Dasswo rd/‘

[wverify password]

I
[generate challenge]

challenge
- q
l* challenge
|: user touches buttan]
response »
response
e =

[verify response]

Abbildung 2.1.: Ablauf der Authentifizierung mit [U2F] \|

OpenSSL)ﬂ Der Benutzer benétigt eine Smartcard, die das [U2E}Verfahren

unterstiitzt, sowie einen kompatiblen Webbrowser.

2.2.2. Funktionsweise

Die Internetseite des Anbieters kommuniziert iiber ein vom Webbrowser zur
Verfiigung gestelltes JavaScript{API mit der Smartcard. Dieses[APT stellt zwei
Funktionen zur Verfigung [BBL15, Abschnitt 3.1.1]:

u2f_register_request zum Registrieren der Smartcard im Konto eines Nut-

Zers.

u2f_sign_request zum Authentifizieren eines Nutzers.

Beide Funktionen arbeiten nach dem Challenge-Response-Verfahren (Abbil-
dung . Der Anbieter generiert eine Challenge, welche einen zufalligen Wert
(Nonce) sowie weitere Parameter enthélt, und sendet diese tiber das [APIl an
die Smartcard. Nachdem der Benutzer die Anfrage bestétigt hat (beispiels-
weise durch Driicken einer physischen Taste an der Smartcard), sendet die
Smartcard eine signierte Antwort zurtick an den Webbrowser, die von diesem

tiber das [APIl der Anwendung zur Verfiigung gestellt wird.

!Theoretisch ist es moglich diese Validierung selbst zu implementieren. Die Gefahr fiir
Fehler und dadurch induzierte Sicherheitsliicken wére jedoch immens.

2. Zweitaktor-Authentifizierung

3 ¢ 2
AN ¥ @ .
©® S v’e’&@% & q,“ﬂééc‘?\'@ S
@“’a\a‘a' &% @& § i S e
S & o k2 EY
1 65 1 L X.509 X

Abbildung 2.2.: Aufbau der Antwort auf einen u2f_register_request [BE15,
Abschnitt 4.3].

Bei jeder dieser Anfragen erwartet die Smartcard eine appId. Diese trennt
den Speicher der Smartcard in unterschiedliche Namensrédume: Die zuvor re-
gistrierten Daten sind beim Authentifizieren nur dann sicht- und benutzbar,
wenn die appId beider Anfragen tibereinstimmt. Der zulassige Inhalt der appId
unterliegt einem komplexen Regelwerk [BH15, Abschnitt 3.1.2], welches sicher-
stellen soll, dass ein bosartiger Dienst nicht in der Lage ist die appId (und somit
die Schliissel) eines anderen Dienstes zu nutzen. Vereinfacht lasst sich sagen,
dass die appId von der in der Adressleiste des Webbrowsers sichtbaren Domain

abgeleitet sein muss.

Einrichtung

Um eine neue Smartcard mit dem Konto eines Nutzers zu verkniipfen, sendet
der Dienst eine Anfrage des Typs u2f_register_request an die Smartcard.
Neben der appId und der Nonce besteht die Moglichkeit etwaige bereits be-
kannte Schliissel in der Anfrage zu vermerken. Dadurch ist es der Smartcard
moglich zu erkennen, dass sie bereits mit dem Konto des Nutzers verkniipft ist,
um dadurch zu vermeiden, dass eine Smartcard mehrfach mit dem identischen
Konto verkniipft wird [BBL15, Abschnitt 5.1.3].

2.2. Universal Second Factor

Nachdem der Nutzer die Anfrage durch Driicken der Taste an der Smartcard
bestétigt hat, generiert die Smartcard ein neues [ECDSAlSchliisselpaar. Der
offentliche Schliissel des Schliisselpaares wird zusammen mit einem Bezeich-
ner fiir dieses Schliisselpaar, einem Attestierungszertifikat und einer
Signatur eines SHAF256-Hashs zurtick an den Webbrowser gesendet (Abbil-

dung .

Diese Antwort ist vom Dienst in ihre Bestandteile zu zerlegen und anschlie-
Bend zu tiberpriifen: Zum einen miissen alle Felder der Antwort das spezifi-
zierte Format aufweisen. So ist unter anderem zu priifen, dass das reservierte
Byte am Anfang der Antwort den Wert 0x05 enthélt. Zum anderen ist die
angehédngte Signatur zu priifen. Diese muss vom mitgesendeten Attestierungs-
zertifikat stammen und sichert neben den einzelnen Feldern der Antwort auch
die urspriingliche Anfrage an die Smartcard. Dadurch ist sichergestellt, dass
die Antwort ,frisch® auf Basis der Anfrage erzeugt und nicht im Rahmen eines
Replay-Angriffs untergeschoben wurde. Das Attestierungszertifikat soll hinge-
gen identisch auf einer Vielzahl an Smartcards eines Herstellers hinterlegt sein
und es dem Dienst somit ermoglichen, nur speziell autorisierte Smartcards zu
erlauben, um dadurch ein gewisses Sicherheitsniveau zu garantierenEl [Sri4-15,
Abschnitt 8]. Beim Parsen der Antwort ergibt sich die Schwierigkeit, dass die
Lange des Attestierungszertifikats nicht explizit angegeben ist. Stattdessen
muss die Struktur des X.509-Zertifikats [RFC5280, Abschnitt 4.1] nach den in
X.69(F| spezifierten Distinguished Encoding Rules (DER]) fiir die Abstract Syn-
tax Notation One [ASN.I]) analysiert und dadurch die Lange des Zertifikats
ermittelt werden [BE15, Abschnitt 4.3].

Nachdem der Anbieter die Antwort der Smartcard verifiziert hat, ist es noch
erforderlich den erhaltenen 6ffentlichen Schliissel und Bezeichner zu hinterle-

gen, damit er fiir die Authentifizierung des Nutzers genutzt werden kann.

2Keine der Smartcards, die dem Autor dieser Arbeit zum Testen zur Verfiigung standen,
implementierte das Attestierungszertifikat konform zur Spezifikation. Eine Smartcard
erzeugte fiir jeden Schliissel ein neues Attestierungszertifikat, die andere verwendete ein
Attestierungszertifikat, welches die Seriennummer der Smartcard enthielt und es somit
erlaubt, die Smartcard {iber Dienste hinweg eindeutig zu identifizieren.

3International Telecommunication Union. Information Technology — ASN.1 Encoding Ru-
les — Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER),
and Distinguished Encoding Rules (DER). ITU-T Recommendation X.690. Juli 2002.
URL: http://wuw.itu.int/ITU-T/studygroups/coml7/languages/X.690-0207.pdfl

http://www.itu.int/ITU-T/studygroups/com17/languages/X.690-0207.pdf

2. Zweitaktor-Authentifizierung

&
& s &2
PR o N &
¥ (9> & & @ ap_p
—— A \r A " Q,{‘l \}EJ oy LAl 9
@ﬁ: .@‘P & qﬁ‘qa\g
1 4 X W V¥
@ "
-~ -~ ~
bit |7]16|5|4[3[2]1]0

user presence byte

(a) Bedeutung der Bits des ersten Bytes.

Abbildung 2.3.: Aufbau der Antwort auf einen u2f_sign_request [BE15, Ab-
schnitt 5.4].

Authentifizierung

Um einen Nutzer nach erfolgter Einrichtung zu authentifizieren, wird eine An-
frage des Typs u2f _sign_request an die Smartcard tibermittelt. Diese enthalt
die appId, die Nonce und die bei der Einrichtung gespeicherten Bezeichner der

zur Authentifizierung zuléssigen Schliisselpaare.

Nachdem der Nutzer die Anfrage durch Driicken der Taste an der Smartcard
bestatigt hat, sendet die Smartcard analog zur Registrierung signierte Daten
(Abbildung [2.3]) zuriick an den Webbrowser. Anders als bei der Registrierung,
sind die Daten nicht mit dem Attestierungszertifikat, sondern mit dem priva-
ten Schliissel eines der bei der Anfrage genannten Schliisselpaare signiert. Der
Bezeichner des verwendeten Schliissels wird getrennt von den signierten Daten

an den Webbrowser tibermittelt.

Um die Signatur zu priifen, ist es erforderlich den bei der Registrierung er-
haltenen offentlichen Schliissel zu vervollstdndigen, damit der Schliissel durch
iibliche Kryptografie-Bibliotheken verarbeitet werden kann. Der Grund dafiir
ist, dass die bei der Einrichtung tibermittelten Daten lediglich den Punkt auf
der P-256-Kurve, ohne weitere Informationen, repriasentieren. Im All-
gemeinen ist es dazu erforderlich den Kurvenpunkt in die SubjectPublicKey
Info-Struktur eines X.509-Zertifikats einzubetten, damit die verwendete Bi-
bliothek erkennt, dass es sich um einen Punkt auf der P-256-Kurve und nicht
etwa um einen RSA-Modulus und -Exponenten handelt. Der [ASN.I} Aufbau

2.2. Universal Second Factor

der SubjectPublicKeyInfo-Struktur fiir [ECDSA}Schliissel ist in RFC 548(ﬁ

beschrieben.

Neben der Validierung der Signatur hat der Anbieter zu priifen, dass der
in der Antwort iibermittelte counter-Wert streng monoton ansteigt. Sollte
der tibermittelte Wert geringer als der zuletzt bekannte sein, so wurde die
Smartcard moglicherweise kopiert oder modifiziert und somit kompromittiert.

Die Authentifizierung des Nutzers kann in diesem Fall natiirlich nicht erfolgen.

Nachdem der Benutzer erfolgreich authentifiziert, also die Signatur validiert
und der counter-Wert iiberprift wurde, ist noch der iibermittelte counter-

Wert zu hinterlegen, um das Verfahren abzuschlief3en.

2.2.3. Analyse des Verfahrens

Universal Second Factor setzt bei der Kommunikation zwischen Smartcard
und Dienst konsequent auf signierte Nachrichten, wobei das Verfahren auf die
durch zertifizierte P-256-Kurve standardisiert wurde. Dieses Verfahren
ist unter Kryptografen umstritten. Einerseits, da einige Designentscheidun-
gen der Kurve unklar sind, andererseits, da es unverhéltnisméflig schwierig ist
dieses Verfahren vollstédndig korrekt zu implementieren [BL14]. Dennoch gilt
das Verfahren grundsétzlich als sicher, daher soll der Fokus dieser Analyse auf
der praktischen Umsetzung des Verfahrens und anderen Designentscheidungen
liegen.

Die Sicherheit von [U2E] basiert auf der Sicherheit der [ECDSAlSignaturen.
Das priméare Standbein ist also die Geheimhaltung der privaten Schliissel. Dies
beginnt bereits bei der Erzeugung des Schliisselpaares. Es ist essentiell, dass
die Smartcard einen sicheren, kryptografischen Zufallsgenerator enthalt, da die
privaten Schliissel andernfalls unter Umstanden berechnet oder erraten werden
konnten. Nachdem die Schliissel erzeugt wurden, diirfen diese die Smartcard
nicht verlassen. Die einzig zuldssige Operation ist es, die Smartcard darum zu
bitten eine Authentifizierungsanfrage zu signieren. Neben der Geheimhaltung
der Schliissel stellt die Spezifikation weitere Anforderungen an den Hersteller
der Smartcard, denn so muss zum Beispiel die Trennung der Namensraume auf

Basis der appId korrekt umgesetzt sein. Auch muss sichergestellt werden, dass

4S. Turner u.a. Elliptic Curve Cryptography Subject Public Key Information. RFC 5480.
RFC Editor, Méarz 2009. URL: http://www.rfc-editor.org/rfc/rfcb480.txt.

http://www.rfc-editor.org/rfc/rfc5480.txt

2. Zweitaktor-Authentifizierung

eine Nutzung der Smartcard durch den Webbrowser nur moglich ist, wenn der

Taster an der Smartcard betéatigt wurde.

Auf Seiten der Webbrowser-Hersteller muss sichergestellt sein, dass ein An-
bieter mit bosartigen Absichten nicht in der Lage ist die appId eines anderen
Anbieters zu nutzen. Dazu muss das in Abschnitt bereits genannte Re-
gelwerk vollstandig korrekt implementiert werden [BH15, Abschnitt 3.1.2].

Schlussendlich muss auch der Anbieter das Verfahren korrekt implementie-
ren: Er muss die [ECDSA}Signaturen korrekt priifen und sicherstellen, dass der

counter-Wert streng monoton ansteigt.

Auch wenn das[U2E} Verfahren in der Theorie sicher sein mag, ist es ein sehr
komplexes Verfahren, denn es miissen drei unterschiedliche Parteien jeweils
alle fiir sie relevanten Details der Spezifikation vollstandig korrekt implemen-
tieren. Wenn nur eine der Parteien einen Fehler in der Umsetzung macht, ist
die Sicherheit gefdhrdet. Fiir den Benutzer ist es schwierig zu priifen, ob alle
Teile korrekt funktionieren. So ist es nahezu unmoglich zu priifen, ob der Zu-
fallsgenerator innerhalb der Smartcard zuverlassig funktioniert. Ebenso ist es
ohne Programmiererfahrung nicht moglich zu priifen, ob der Webbrowser die

Validierung der appId korrekt umsetzt.

Diese Komplexitat schiitzt aber gegen Probleme, gegen die beispielsweise das
[TOTP}Verfahren nicht schiitzen kann (Abschnitt [2.3.3)): Bei korrekter Umset-
zung des [U2F} Verfahrens ist der Benutzer gegen Phishing-Angriffe geschiitzt.
Aufgrund der appId ist es fiir eine Phishing-Seite nicht moglich eine giiltige
Signatur der Challenge des Anbieters zu erwirken. Selbst wenn der Phisher in
der Lage ist durch einen Man in the Middle-Angriff die Domain des Anbie-
ters zu kapern, kann der Phishing-Angriff abgewehrt werden. Es ist namlich
moglich, gewisse Parameter der Transport Layer Security (TLS)-Verbindung
mit in die Challenge einzubetten |Sri4-15, Seite 8]. Diese Parameter kénnen
durch den Phisher nicht kontrolliert werden und unterscheiden sich daher bei
der Verbindung zwischen Nutzer und Phisher sowie Phisher und Anbieter,
wodurch der Man in the Middle-Angriff auffliegt. Auch ist es schwierig das
Authentifizierungsmerkmal zu duplizieren. Selbst wenn ein Angreifer an das
Schliisselpaar gelangen wiirde, miisste er einen plausiblen Wert fiir den streng
monotonen counter erraten. Wahlt er zu niedrig, dann féllt der Angriff sofort
auf. Wahlt er deutlich zu hoch, dann ist es ebenfalls unwahrscheinlich, dass

die urspriingliche Smartcard die Daten signiert hat.

10

2.2. Universal Second Factor

Fazit

[02L] ist ein sicheres Verfahren, bei dem im Entwurf eine Vielzahl von An-
griffsmoglichkeiten bedacht und abgewehrt wurden. Diese Sicherheit stiitzt
sich jedoch auf die korrekte Implementation der umfangreichen Spezifikation.
Wie in Fufinote [2] angemerkt, implementiert keine der Smartcards des Autors
das Attestierungszertifikat korrekt. Dieser Fehler in der Umsetzung ist zwar
nicht sicherheitsrelevant, jedoch im Falle der einen Smartcard aus Griinden der
Privatsphare fragwiirdig. Dies macht deutlich, dass Fehler in der Umsetzung
definitiv vorkommen und dadurch die Sicherheit von Universal Second Factor

gefahrden.

2.2.4. Vergleich mit anderen Smartcard-Verfahren

Es gibt eine Vielzahl von Unternehmen, die Smartcards fiir die Nutzung am
Rechner anbieten. Die meisten dieser Systeme sind jedoch nicht unmittelbar
zur Nutzung im Bereich der Mehrfaktorauthentifizierung geeignet. Stattdessen
sind diese dazu gedacht, die Verwendung von Software im Bereich der asym-
metrischen Verschliisselung durch eine Hardware-basierte Losung zu ersetzen.
Beispielsweise lassen sich ein Grofiteil der angebotenen Smartcards mithilfe von
Pretty Good Privacy (PGP])-Software ansteuern. Die Smartcards, welche fiir
die Verwendung als Authentifizierungsmerkmal konzipiert wurden, sind jedoch
oftmals proprietar. So wird beispielsweise ein USB-Stick zum sicheren Versen-
den seiner Steuererklarung mittels [ELSTER]angeboten [sec|. Dieser USB-Stick
ist allerdings nicht fiir andere Zwecke verwendbar. Breitere Unterstiitzung ha-
ben Systeme von Yubico und Nitrokey, allerdings ist man auch hier bei den
alteren Modellen an den Hersteller gebunden und von diesem abhéngig. Beide
Unternehmen bieten jedoch mittlerweile auch Smartcards an, die neben dem

proprietidren Verfahren ebenso [U2F unterstiitzen.

Fazit

Universal Second Factor bietet den grofien Vorteil, dass es ein offener Stan-
dard ist. Dadurch besteht weder fiir den Anbieter, noch fir den Nutzer die
Gefahr, dass das System eingestellt wird und ein neues Verfahren implemen-
tiert beziehungsweise eine neue Smartcard erworben werden muss. Durch die

standardmafige Integration in Webbrowsern und Hersteller, die einfache [J2E}+

11

2. Zweitaktor-Authentifizierung

kompatible Smartcards bereits fiir unter 10€ anbieten, ist die Einstiegshiirde
sehr gering. So miissen keine Gerate-Treiber installiert werden und die Inves-
tition lohnt sich auch dann, wenn noch nicht viele der genutzten Dienste das

Verfahren implementieren.

2.3. Time-based One-time Password Algorithm

Der Time-based One-time Password Algorithm (TOTP]), auch bekannt als
RFC 62397 ist eine Erweiterung des in RFC 4226 spezifizierten [IMACH Based
One-Time Password Algorithm (HOTDP]). Durch die Standardisierung als RFC
und einfacher Implementierung auf Seiten des Dienstes, ist es das wohl belieb-
teste Verfahren fir Zweifaktor- Authentifizierung im Web. Die Google Authen-
ticator-Client-Implementierung (Abbildung fir Android verzeichnet bei-
spielsweise zwischen 10 und 50-Millionen Installationen und rund 140-Tausend

Bewertungen |Goo].

2.3.1. Voraussetzungen

Die Anforderungen auf Seiten des Anbieters beschréinken sich auf eine korrekte
Systemzeit. Auf Seiten des Nutzers ist ein [[OTPFGenerator erforderlich. Im
Regelfall ist dies eine App fiir das eigene Smartphone. Der Generator koénnte

aber auch in den eigenen Passwort-Safe integriert sein [Mar].

2.3.2. Funktionsweise
Einrichtung

Bei der Einrichtung der Zweifaktor-Authentifizierung mittels [TOQTD] generiert
der Dienst mithilfe eines kryptografisch sicheren Zufallszahlengenerators ein
Shared Secret, welches der Benutzer in seine [[OTPFAnwendung tibertragt.
Um die Ubertragung zu erleichtern, bieten iibliche Client-Anwendungen die
Moglichkeit, das Shared Secret zusammen mit dem Namen des Dienstes und
den Parametern des Algorithmus in Form eines an eine Smartphone-
Anwendung zu tibertragen (Abbildung [Gool5).

°D. M’Raihi u.a. TOTP: Time-Based One-Time Password Algorithm. RFC 6238. RFC
Editor, Mai 2011. URL: http://www.rfc-editor.org/rfc/rfc6238.txt.

5D. M’Raihi u.a. HOTP: An HMAC-Based One-Time Password Algorithm. RFC 4226.
RFC Editor, Dez. 2005. URL: http://www.rfc-editor.org/rfc/rfc4226.txt|

12

http://www.rfc-editor.org/rfc/rfc6238.txt
http://www.rfc-editor.org/rfc/rfc4226.txt

2.3. Time-based One-time Password Algorithm

A A AT
Authenticator
329 703
hikingfan@gmail.com &
240 669
surfingfan@gmail.com &

Abbildung 2.4.: Ansicht der Einmalkennworter in Google Authenticator fiir An-
droid [Goo].

Abbildung 2.5.: welcher das [[TOTPlShared Secret enthélt.

13

2. Zweitaktor-Authentifizierung

Authentifizierung

Sowohl dem Anbieter als auch der Client-Anwendung sind die Parameter des
Algorithmus sowie das vereinbarte Shared Secret bekannt. Bei der Authentifi-
zierung bittet der Benutzer seine Client-Anwendung das aktuelle Einmalkenn-
wort zu erzeugen und sendet es an den Anbieter. Dieser generiert nun ebenfalls
das aktuelle Einmalkennwort und vergleicht es mit dem iibermittelten Einmal-
kennwort des Nutzers. Wenn beide Kennworter iibereinstimmen, dann ist der
Nutzer erfolgreich authentifiziert worden.

Der Algorithmus zur Generierung der Einmalkennworter mittels [HOTPI (der

Basis fir [TOTD) lautet:

Algorithmus 2.1 HMAC-based One-time Password Algorithm
H + HMAC-SHA1(K, C) {H]0..159] ist nun ein 160-Bit String}
O <+ H[156..159] {O ist die Zahl, die durch die letzten 4 Bit von H repra-
sentiert wird}
S« H[O x 8+ 1..0 x 8+ 31] {S ist die Zahl, die, ohne Berticksichtigung
des Most Significant Bit, durch die Bytes O bis O + 3 von H reprasentiert
wird }
return S mod 10”

Hierbei bezeichnet IMACHSHAN den in RFC 2104] beschriebenen Algorith-
mus unter Verwendung des in RFC 3174E| definierten Secure Hash Algorithm 1,

K das Shared Secret, C' einen streng monoton steigenden Zahler und D die

Lange des gewiinschten Einmalkennwortes.
[TOTPI definiert den Wert von C wie folgt auf Basis der aktuellen Uhrzeit:

Algorithmus 2.2 Time-based One-time Password Algorithm

T

return {XJ

Hierbei bezeichnet T die Anzahl der Sekunden, die seit dem 1. Januar 1970
00:00:00 UTC vergangen sind (UNIX-Timestamp) und X die mit der Client-
Anwendung vereinbarte Schrittgrofie.

Unter Verwendung der Standardparameter (X = 30, D = 6) wird also al-

le 30 Sekunden ein neues Einmalkennwort, bestehend aus 6 Ziffern, erzeugt.

"Hugo Krawczyk, Mihir Bellare und Ran Canetti. HMAC: Keyed-Hashing for Message
Authentication. RFC 2104. RFC Editor, Feb. 1997. URL: http://www.rfc-editor.org/
rfc/rfc2104.txtl

8D. Eastlake und P. Jones. US Secure Hash Algorithm 1 (SHA1). RFC 3174. RFC Editor,
Sep. 2001. URL: http://www.rfc-editor.org/rfc/rfc3174.txt.

14

http://www.rfc-editor.org/rfc/rfc2104.txt
http://www.rfc-editor.org/rfc/rfc2104.txt
http://www.rfc-editor.org/rfc/rfc3174.txt

2.3. Time-based One-time Password Algorithm

Um die Benutzerfreundlichkeit zu erhohen, ist es moglich, dass der Anbieter
zusatzlich das jeweils vorherige und nachste Einmalkennwort akzeptiert. Dazu
inkrementiert beziehungsweise dekrementiert der Anbieter den mittels Algo-
rithmus ermittelten Wert von C' um 1. Dies erlaubt es dem Benutzer sich
zu authentifizieren, auch wenn die Uhrzeit seiner Client-Anwendung leicht ab-

weicht oder er den Code erst am Ende des 30-sekiindigen Zeitfensters abliest.

2.3.3. Analyse des Verfahrens

Primérer Baustein des[TOTD}FVerfahrens ist der Keyed-Hash Message Authen-
tication Code ([HMAC), welcher gleich zu Beginn berechnet wird (Algorith-
mus . Die Sicherheit des Verfahrens steht und fallt mit der Sicherheit der
HMAC Konkret miissen zwei Eigenschaften von der [HMAC gefordert werden:

1. Die Ausgabe darf ohne Kenntnis des Shared Secrets nicht vorhersehbar

sein.
2. Die Ausgabe muss zuféllig verteilt sein.

Wird die erste Eigenschaft verletzt, so ist das Verfahren offensichtlich un-
sicher. Wird die zweite Eigenschaft verletzt, so wire es moglich taktisch an
einen Brute-Force-Angriff heranzugehen und somit die Chance zu erhéhen ein
richtiges Einmalkennwort zu erraten.

ist, wie der Name sagt, ein Message Authentication Code (MAC]).
Zweck eines [MACE ist es die Authentizitat einer Nachricht sicherzustellen. Ein
Angreifer darf also nicht in der Lage sein einen giiltigen [MAC fiir eine von ihm
erstellte Nachricht zu erstellen. Im Kontext von [TOTP] mochte der Angreifer
also den [MA(fiur die Nachricht C, dem streng monoton steigenden Zéhler,
erstellen. Das [IMACHVerfahren gilt derzeit fiir die Verwendung als [NMAC] als
sicher und wird unter anderem in verwendet, um verschliisselte Internet-
verbindungen zu authentifizieren. Es kann also davon ausgegangen werden,
dass die erste geforderte Eigenschaft erfiillt ist.

Die in [TOTP] verwendete ist [IMACHSHTAl, das Verfahren basiert
also auf dem Secure Hash Algorithm 1. Diese Hash-Funktion erfiillt das Strict
Avalance Criterion |[MI16], da sich jeder kleinsten Anderung an der Einga-
be jedes Bit der Ausgabe mit einer Wahrscheinlichkeit von 50% andert. Die
Ausgabe des Secure Hash Algorithm (SHA]) 1 ist also zuféllig verteilt.

15

2. Zweitaktor-Authentifizierung

Beide Kriterien werden also von der verwendeten [HMAC erfiillt. Fiir einen
Angreifer ist es folglich schwierig die Ausgabe der [IMAC] vorherzusehen. Es

bleibt zu untersuchen, ob die spéateren Operationen die Eigenschaften verletzen:

Durch die Konstruktion des Wertes O (Algorithmus wird erreicht, dass
jedes Byte der Ausgabe gleich wahrscheinlich in die Berechnung des Einmal-
kennwortes eingeht. Ungenutzt bleiben lediglich die oberen 4 Bit des letzten
Bytes. Bei der Berechnung des Modulos entsteht jedoch ein leichtes statisti-
sches Ungleichgewicht. Die Zahl S ist ein 31-Bit-Integer, also eine Zahl zwi-
schen 0 und 2.147.483.647. Bei der Berechnung des Modulos mit dem Wert 10°
sind die Zahlen von 000.000 bis 483.647 somit wahrscheinlicher als die Zahlen
von 483.648 bis 999.999. Die Differenz liegt dabei jedoch unter 0,0001%. Um
das Ungleichgewicht zu korrigieren, misste der Algorithmus jedoch verkompli-
ziert werden, da im Falle einer Zahl grofler als 2.146.999.999 ein alternativer
Wert gefunden werden miisste. Dabei muss sichergestellt werden, dass dieser
Wert gleichverteilt wére, da andernfalls keine Verbesserung eintreten wiirde.
Den Entwicklern war das Ungleichgewicht der Werte bekannt, sie entschieden
sich aufgrund der geringen Differenz der Wahrscheinlichkeit jedoch dazu den
Algorithmus so zu belassen, wie er ist, da dieser Umstand das Verfahrens nicht
nennenswert schwéicht [RFC4226, Appendix A].

Bei dem [TOTP}Verfahren ist es also auch einem versierten Angreifer nicht
moglich, ohne Kenntnis des Shared Secrets ein giiltiges Einmalkennwort zu er-
zeugen. Dies kann in einer konkreten technischen Umsetzung jedoch anders
aussehen: Durch einen Seitenkanalangriff kann es moglich sein Informatio-
nen iiber das aktuell giiltige Einmalkennwort zu erhalten. Beispielsweise durch
einen Timing-Angriff, wenn bei der Uberpriifung des Einmalkennworts der

Vergleich abgebrochen wird, sobald eine Differenz festgestellt wurde.

Ebenso ist das [TOTDPHVerfahren, genauso wie regulare Kennworter, anfil-
lig fiir einen Phishing-Angriff. Fine Phishing-Seite konnte den Benutzer nach
der Eingabe seines reguldren Kennworts ebenfalls nach dem aktuell giiltigen
Einmalkennwort fragen und dieses anschliefend zum Login nutzen. In dieser
Hinsicht bietet der zweite Faktor in Form von [TOTP] kein nennenswertes Mehr
an Sicherheit, wenn die Angreifer die entsprechende Funktion in ihrer Phishing-
Seite implementieren. Wenn sie dies nicht tun, weil der Grofiteil der Nutzer
keine Mehrfaktorauthentifizierung nutzt, dann bietet [TOTP] einen zusatzlichen
Schutz.

16

2.3. Time-based One-time Password Algorithm

2.3.4. Vergleich mit anderen Einmalkennwort-Verfahren

Ahnlich wie sich Authentifizierungsverfahren in die drei eingangs genannten
Kategorien (Abschnitt einordnen lassen, lassen sich auch die Einmalkenn-

wort-Verfahren kategorisieren:

Zeitbasiert [TOTD
Zzhlerbasiert [HOTDP] Lamport One-Time Password (OTD)
Getrennter Kanal [TAN}Liste, [SMS]

Challenge-Response Zero-Knowlege-Beweis

Gegentiber ziahlerbasierten Verfahren bieten zeitbasierte Verfahren den Vor-
teil, dass der Zustand der Berechnung des Einmalkennworts bei Anbieter und
Nutzer identisch ist. Es kann bei einem zéhlerbasierten Verfahren leicht pas-
sieren, dass der Nutzer versehentlich ein neues Einmalkennwort erzeugen lasst
und anschlieBend nicht nutzt, weil er sich gar nicht authentifizieren wollte. Da
der Anbieter keine Kenntnis dariiber besitzt, dass ein Einmalkennwort unge-
nutzt blieb, erwartet dieser beim nachsten Authentifizierungsversuch das verse-
hentlich generierte Kennwort anstatt des Kennworts, das dem Nutzer angezeigt
wird. Dies hat zur Folge, dass der Nutzer sich nicht erfolgreich authentifizieren
kann, obwohl er seiner Meinung nach das korrekte Kennwort iibermittelt hat.
Im Gegenzug ist ein zéhlerbasierter Generator in der Herstellung giinstiger, da
dieser keine integrierte Uhr besitzen muss. Im Zeitalter der Smartphones mit
kostenfreien [TOTPlGeneratoren ist dieser Vorteil jedoch eher theoretischer
Natur.

Die Ubermittlung von Einmalkennwortern iiber einen getrennten Kanal in
Form einer [TAN}Liste bietet den Vorteil, dass sie komplett ohne weitere Tech-
nik auskommt. Dieser Vorteil ist jedoch auch der grofite Nachteil: Die Anzahl
der Einmalkennworter ist begrenzt und somit muss die Liste regelméflig er-
neuert werden. Dies verursacht laufende Kosten in Form von Porto und ist
moglicherweise mit langen Wartezeiten verbunden. Selbst wenn die Liste in di-
gitaler Form zur Verfiigung gestellt werden wiirde, ist es erforderlich regelméafig
an die Erneuerung zu denken. Im Ernstfall steht moglicherweise kein gtiltiges
Einmalkennwort zur Verfiigung. Andere Verfahren, wie[TOTP] bieten den Vor-

teil, dass diese Einmalkennworter in unbegrenzter Menge zur Verfiigung stellen

17

2. Zweitaktor-Authentifizierung

konnen. Die Ubermittlung in Form von teilt den Nachteil der Begrenzt-
heit der [TANlListe nicht, erfordert aber beim Anbieter spezielle Hardware
zur Kommunikation mit dem Mobilfunknetz und verursacht laufende Kosten.
Auch ist es moglich, dass die Nachricht erst mit erheblicher Verzoégerung beim
Nutzer ankommt, beispielsweise in Gegenden mit schlechter Netzabdeckung
oder in Gebéduden. [TOTP] funktioniert komplett ohne Kommunikation mit der
Auflenwelt.

Der Ubergang zwischen einem Challenge-Response-Einmalkennwortverfah-
ren und Smartcard-basierenden Verfahren ist flieBend, ein ausreichend sicheres
Verfahren ist kaum im Kopf zu 16sen und wenn die Challenge manuell in ein
Programm tibertragen werden muss, dann ist der Schritt bis zur Smartcard
nicht mehr weit. Wenn nicht mit einer Smartcard gearbeitet wird, dann ha-
ben Challenge-Response-Verfahren den Nachteil, dass ein hoher Aufwand zur
Authentifizierung erforderlich ist; wenn mit einer Smartcard gearbeitet wird,
dann treffen die in Abschnitt 2.2.4] beschriebenen Vor- und Nachteile zu.

Fazit

Es wird deutlich, dass das [[TOTDPHVerfahren im Bereich der Benutzerfreund-
lichkeit viele Vorteile gegentiber alternativer Einmalkennwortverfahren bietet.
Durch die Standardisierung lassen sich mittels einer Client-Anwendung eine
Vielzahl von Diensten sichern, die Kennworter sind durch die geringe Léange
einfach zu tibertragen und die erstmalige Einrichtung ist durch die Unterstiit-
zung fiir ohne besondere Kenntnisse zu bewerkstelligen. [TOTP] ist
auch in Bezug auf die technischen Implementierung attraktiv, so ist der Algo-
rithmus zur Generierung der Einmalkennworter sehr simpel aufgebaut (siehe
Algorithmus und lésst wenig Raum fiir sicherheitsrelevante Programmier-
fehler.

2.4. Verlust des zweiten Faktors

Es wird unweigerlich passieren, dass ein Nutzer des Dienstes die Moglichkeit
verliert sich mit dem gewahlten zweiten Faktor zu authentifizieren. Ein Smart-
phone mit der [TOTP}Client-Anwendung konnte beispielsweise zu Boden fal-
len oder gestohlen werden und dem Nutzer dadurch nicht mehr zur Verfiigung

stehen. Oder aber der Nutzer deinstalliert die Client-Anwendung, um Spei-

18

2.4. Verlust des zweiten Faktors

cherplatz zu schaffen, und vergisst vorher die Zweifaktor-Authentifizierung bei
den betroffenen Diensten zu deaktivieren. Es sollte daher ein Konzept entwi-
ckelt werden, wie man dem Benutzer in diesem Fall helfen kann wieder an sein
Benutzerkonto zu gelangen, ohne die erhéhte Sicherheit durch die Zweifak-
tor-Authentifizierung zu untergraben. Ein einfaches Senden eines Links an die
hinterlegte E-Mail-Adresse wére nicht ausreichend, da ein Angreifer mit Kon-
trolle iber das E-Mail-Konto des Nutzers auf diese Weise sowohl das Kennwort
zurlicksetzen, als auch die Zweifaktor-Authentifizierung deaktivieren kénnte.
Wenn dem Anbieter des Dienstes die Adressdaten des Nutzers bekannt sind
(beispielsweise in einem Online-Shop), dann konnte er den Nutzer beispielswei-
se durch einen unterschriebenen Brief zusammen mit einer Kopie des Perso-
nalausweises authentifizieren. Eine andere Moglichkeit ist es, mehrere sichere
Verfahren zur Zweifaktor-Authentifizierung parallel anzubieten. Wenn einer
der Faktoren unbrauchbar wird, dann hat der Nutzer die Moglichkeit auf ei-
ne Alternative auszuweichen. So ist es tiblich, bei der ersten Einrichtung eine
Liste von Einmalkennwortern, ahnlich einer [TAN} Liste, zu generieren, die der

Benutzer auf unterschiedlichste Art und Weise aufbewahren kann.

19

3. Implementation von Universal

Second Factor

Nachdem in Abschnitt bereits untersucht wurde, wie Universal Second
Factor (U2E]) laut Spezifikation implementiert werden sollte, soll sich Kapi-
tel [der konkreten Umsetzung einer Authentifizierung mittels [02F] widmen.
Dazu wird zuerst einmal die bestehende Anwendung vorgestellt (Abschnitt
, anschliefend die notwendige technische Basis fiir die Mehrfaktor- Authen-
tifizierung geschaffen (Abschnitt [3.2). Nachdem alles vorbereitet wurde, wird
untersucht, wie die Kommunikation mit der Smartcard ablauft und die in Ab-
schnitt kennengelernten ,Responses* verarbeitet werden (Abschnitt ,
zweitens wird schliefilich demonstriert, wie das Verfahren in das System einge-

bettet wird (Abschnitte [3.4} [3.F)).

Ergebnis der Implementierung sollen zwei Dinge sein:

1. Eine wiederverwendbare[U2E}Bibliothek, die die Kommunikation mit der

Smartcard ibernimmt.

2. Eine flexible Integration einer Mehrfaktor-Authentifizierung, sodass oh-
ne viel Aufwand weitere Verfahren (wie beispielsweise [TOTP) ergénzt

werden konnen.

3.1. Vorstellung des bestehenden Systems

Die bestehende Anwendung fitnessKOMPLEX ist in [PHP] 5.6 entwickelt und
kommuniziert via FastfCGImit dem Webserver (Apache 2). Das Betriebssystem
der Server ist Red Hat Enterprise Linux (RHEL) 5. Der fitnessKOMPLEX
speichert seine Daten in einer SQL-Datenbank.

Die bestehende Authentifizierung ist direkt im Webserver implementiert und

kann tiber verschiedene Verfahren erfolgen. Im Regelfall wird der Nutzer iiber

21

3. Implementation von Universal Second Factor

das [HTTP}Digest-Verfahren authentifiziert [REC2617, Abschnitt 3]. Ein alter-
natives Verfahren ist die Authentifizierung tiber ein [[LSFClientzertifikat.
Allen Verfahren ist gemein, dass der Webserver den authentifizierten Nut-
zernamen als Umgebungsvariable an die PHPF Anwendung weitergibt. Die An-
wendung muss sich um nichts kﬁmmernﬂ Das Kennwort des Nutzers wird zu
keinem Zeitpunkt an den fitnessKOMPLEX weitergegeben. Aufgrund dieser
Tatsache existiert in der Anwendung noch kein Sitzungssystem. Alle Anfragen
erfolgen zustandslos und der Benutzer wird bei jedem Seitenabruf erneut vom

Webserver authentifiziert.

3.2. Voraussetzungen schaffen

3.2.1. Sitzungssystem

Fiir das [2F} Verfahren und die Mehrfaktor-Authentifizierung im Allgemeinen
ist es erforderlich, Sitzungen verwalten zu kénnen: Es muss moglich sein fest-
zustellen, ob der Nutzer die Seite zum ersten Mal 6ffnet und daher nach dem
zweiten Faktor gefragt werden sollte, oder, ob er sich bereits erfolgreich authen-
tifiziert hat. Fir das[02E} Verfahren im Speziellen miissen die an die Smartcard
gesendeten Challenges gespeichert werden, damit die Responses anschlieflend
iiberpriift werden kénnen.

[PHDP integriert bereits ein Sitzungssystem in der Standardbibliothek [The].
Dieses ist allerdings nicht nutzbar, da die Webserver als Cluster betrieben und
die Sitzungen nicht zwischen den einzelnen Knoten synchronisiert werden. Je
nachdem, ob man bei einem spéateren Aufruf auf den gleichen Knoten gelangt,
besteht die Moglichkeit, dass die Sitzung als ungiiltig erkannt wird. Dies ist
offensichtlich unbefriedigend. Die naheliegende Alternative wére es, die Sit-
zungen in der bestehenden SQL-Datenbank zu speichern. Dies wiirde jedoch
bedeuten, dass ebenfalls ein Verfahren zum Aufraumen abgelaufener Sitzun-
gen gefunden werden misste. Andernfalls wiirde die Datenbank irgendwann
mit vielen Sitzungen unnotig aufgebldht. Fiir zuverldssige Aufraumarbeiten

wéren zeitgesteuerte Aufgaben (Cronjobs) erforderlich, die aber nicht zur Ver-

! Tatséchlich wird die Anwendung nicht einmal gestartet, wenn fiir den aufgerufenen [JRI]
die Authentifizierung aktiviert ist und der Nutzer nicht authentifiziert werden kann.
Die Entscheidung, ob eine Authentifizierung erfolgen soll oder nicht, wird auf Basis der
verwendeten Subdomain getroffen.

22

3.2. Voraussetzungen schaffen

fiigung stehen. Stattdessen setzt die Beispielimplementierung zur Verwaltung
der Sitzungen auf ein verschliisseltes, authentifiziertes Cookie [RFC6265|. Dies
hat den Vorteil, dass der Verantwortungsbereich fiir die Sitzungen nicht beim
Webserver, sondern beim Webbrowser liegt. Dieser hat dafiir Sorge zu tra-
gen, dass die Sitzungsdaten zuverlassig gespeichert und der Anwendung zur
Verfiigung gestellt werden. Die Anwendung selbst bleibt in dieser Hinsicht zu-
standslos. Ein etwaiges Ablaufdatum der Sitzung wird dabei innerhalb der
verschliisselten Daten abgelegt. Das Datum, das beim Setzen des Cookies mit-
gesendet wird, konnte vom Nutzer manipuliert werden.

Zur Sicherung des Cookies wird auf die php-encryption-Bibliothek in Ver-
sion 1.2.1 gesetzt [Hor]. Eine neuere Version der Bibliothek ist aufgrund der
in RHET] 5 mitgelieferten [ETPSlzertifizierten OpenSSL-Version inkompatibel
[Arc16|. Die Verwendung einer Bibliothek empfiehlt sich, da diese besser ge-
testet ist als eine manuell (auf Basis von OpenSSL) implementierte Verschlis-

selungsroutine es jemals sein wird.

3.2.2. Datenbanktabellen

Die Informationen zur Mehrfaktor-Authentifizierung sollen ebenfalls in der
SQL-Datenbank hinterlegt werden. Dazu sind zwei Anderungen am Daten-

bank-Schema erforderlich:

1. Eine neue boolesche Spalte in der Nutzer-Tabelle (Person), welche spe-
zifiziert, ob fir dieses Nutzerkonto eine Mehrfaktor-Authentifizierung er-

folgen soll.

2. Eine neue Tabelle (2fa), in der die eingerichteten Authentifizierungs-

merkmale hinterlegt werden.

Die einzelnen Spalten der 2fa-Tabelle (Abbildung sind:
id Die id des Nutzers zu dem dieses Merkmal gehort.

type Die Art des Merkmals. In der Beispielimplementierung entweder u2f oder

scratch.

device Ein eindeutiger, vom Benutzer gewahlter Name fiir das Merkmal (bei-

spielsweise ,schwarze Smartcard*®).

23

3. Implementation von Universal Second Factor

Person fa
- id int [PA] .
- email varchar(128) [U.N] [:::PftﬂLZﬁFK]
- vorname varchar(128) [N] _ device varchar(128) [PK]
- nachname varchar(128) [N] _ data blob B
- 2fa_enabled tinyint -

Abbildung 3.1.: Datenbankschema mit den notwendigen Anderungen fiir Mehr-
faktor-Authentifizierung.

data Ein opaker Bytestring mit Metadaten des Authentifizierungsmerkmals.
Der Inhalt ist abhéngig von type zu interpretieren (beispielsweise der
offentliche Schliissel, Abschnitt [2.2.2]).

3.2.3. OpenSSL

Voraussetzung fiir [U2F] ist eine Kryptografie-Bibliothek mit Unterstiitzung fiir
[ECDSA}Signaturen auf der P-256-Kurve (Abschnitt 2.2.1). In der in [RHET]5
mitgelieferten OpenSSL-Version fehlt neben der Unterstiitzung fiir den Ad-
vanced Encryption Standard (AES) im CTR-Modus (Abschnitt auch
die Unterstiitzung fiir Kryptografie auf Basis von elliptischen Kurven. Anders
als bei der php-encryption-Bibliothek, besteht bei der Kommunikation mit
der Smartcard aber die Moglichkeit diese Unzuldnglichkeit sinnvoll zu umge-
hen. Anpassungen an einer Fremdbibliothek wiirden die Vorteile des Einsatzes
selbiger ad absurdum fiihren. Bei der selbst entwickelten Bibliothek zur Kom-
munikation mit der Smartcard kann die Problematik hingegen direkt bei der
Entwicklung beriicksichtigt werden.

Anstatt auf die in PHP] integrierte Funktion zum Validieren von Signaturen
zu setzen (openssl_verify), soll alternativ ein Kommandozeilenaufruf einer
geeigneten OpenSSL-Version verwendet werden konnen (openssl dgst). Da-
zu wird eine statisch kompilierte OpenSSL-Binary in der aktuellen (1.0.1c)
Version mitgeliefert. Diese kann dann iiber die exec-Funktion mittels [PHPI
angesprochen werden. Die Verwendung einer statisch kompilierten Binary bie-
tet hier den Vorteil, dass alle Abhangigkeiten von OpenSSL in der Binary

enthalten sind. Diese Binary kann also auf jedem Rechner verwendet werden,

24

3.3. Kommunikation mit der Smartcard

auf dem ein Linux-Kernel (Version 2.6 oder hoher) lduft - unabhéngig davon,

in welcher Version die Systembibliotheken vorliegen.

3.3. Kommunikation mit der Smartcard

Zur Kommunikation mit der Smartcard wurde eine wiederverwendbare [PHDP}
Klasse entwickelt. Das offentliche [API] dieser Klasse besteht, neben dem Kon-
struktor, aus 4 Methoden: Jeweils eine Methode zum Generieren der Challenge
und Verarbeiten der Response fiir beide der Funktionen, die die Smartcard zur

Verfiigung stellt:

generateRegisterRequest Berechnet die notwendigen Fingabeparameter fiir

einen u2f_register_request.

verifyRegisterResponse Validiert und verarbeitet die Antwort auf einen u2f _

register_request.

generateSignRequest Berechnet die notwendigen Eingabeparameter fiir einen

u2f_sign request.

verifySignResponse Validiert und verarbeitet die Antwort auf einen u2f_

register_request.

Die einzelnen Methoden sind so entwickelt worden, dass es moglichst schwie-
rig ist das[APIl fehlerhaft zu verwenden und dadurch versehentlich Sicherheits-
liicken einzufithren. So werden von den verify+*Response-Methoden Excepti-
ons geworfen, wenn die Antwort der Smartcard nicht giiltig validiert werden
konnte. Dadurch wird sichergestellt, dass es, anders als beim Riickgabewert,
nicht moglich ist zu vergessen zu tiberprifen, ob die Antwort giiltig war. Wenn
die Exception nicht behandelt wird, dann wird die Anfrage automatisch seitens
der Laufzeitumgebung abgebrochen. Ebenso wurden die Parameter der Metho-
den so gewéhlt, dass die Antwort der Smartcard unverandert genutzt werden
kann. Dadurch muss der Nutzer der Klasse die Antwort lediglich tibergeben,
ohne vorab komplexe Vorarbeit leisten zu miissen.

Auf Seiten des Webbrowsers setzt die Integration auf eine von Google entwi-
ckelte JavaScript-Bibliothek, die das von der Alliance spezifizierte High-
Level-JavaScript{AP] zur Verfiigung stellt [BBL15} |Gool4].

25

e

O = W N =

3. Implementation von Universal Second Factor

Alle nachfolgend kennengelernten Strukturen werden in der Kommunikation
mittels JavaScript Object Notation ([ISON)) kodiert.

3.3.1. __construct

Die einzige Aufgabe des Konstruktors ist es, zwei Parameter, die fir meh-
rere Methoden benétigt werden, zu hinterlegen: Die appId (Abschnitt
und ein Pfad zu einer OpenSSL-Binary, falls die in [PHD] integrierte Version
unzuldnglich ist (siche Abschnitt [3.2.3)).

3.3.2. generateRegisterRequest

generateRegisterRequest berechnet den notwendigen Inhalt fiir die Regis
terRequest-Struktur, welche in der u2f.sign-Methode des JavaScript{APIl

ein notwendiger Parameter ist.

dictionary RegisterRequest {
DOMString version;
DOMString challenge;
s

Listing 3.1: Aufbau der RegisterRequest-Struktur. [BBL15, Abschnitt 5.1]

version wird fest als U2F_V2 gewahlt. challenge ist ein mit einem kryp-
tografisch sicheren Zufallszahlengenerator erzeugter Bytestring der Lénge 32,
der mittels websafe-base64 kodiert wurde [RFC4648|, Abschnitt 5].

3.3.3. verifyRegisterResponse

verifyRegisterResponse ist als Gegenstiick zu generateRegisterRequest
dafiir zustandig, die RegisterResponse-Struktur in der Antwort der Smart-

card zu verarbeiten.

dictionary RegisterResponse {
DOMString version;
DOMString registrationData;
DOMString clientData;

+s

Listing 3.2: Aufbau der RegisterResponse-Struktur [BBL15, Abschnitt 5.1.3].

26

S O o W N

3.3. Kommunikation mit der Smartcard

registrationData ist die, in websafe-base64 kodierte, Antwort auf die An-
frage (siehe Abbildung . clientData ist eine in websafe-base64 kodierte
Struktur des Typs ClientData.

dictionary ClientData {

DOMString typ;

DOMString challenge;

DOMString origin;

(DOMString or JwkKey) cid_pubkey;

Listing 3.3: Aufbau der ClientData-Struktur [BE15, Abschnitt 7].

Aufgabe der Methode ist es, die einzelnen Bestandteile der RegisterRes

ponse-Struktur zu verarbeiten und zu priifen. Die Priiffung von clientData

ist trivial:

1.

2.

typ muss navigator.id.finishEnrollment sein.

challenge muss dem Wert challenge des zugehorigen RegisterRequest

entsprechen (Abschnitt (3.3.2)).

origin wird, wenn gewtiinscht, vom aufrufenden Code tberpriift. Der
Wert steht in keiner direkten Beziehung zum [02E}FProtokoll selbst, ei-
ne fehlende Priifung verringert die Sicherheit des Verfahrens nicht. Die

Prifung des Werts dient dem Schutz vor Phishing-Angriffen.

. cid_pubkey wird, wie origin, vom aufrufenden Code tiberpriift. Damit

dieses Feld tiberhaupt befiillt wird, ist eine spezielle [I'LSFKonfiguration

innerhalb des Webservers erforderlich.

Die Priifung von registrationData gestaltet sich ein wenig komplexer:

1.

2.

Extrahieren der ersten 3 Felder tiber feste Byte-Offsets und Léange.

Extrahieren des 4. Feldes. Die Lange wird durch das 3. Feld spezifiziert.
Das 3. Feld ist dazu als 8-Bit-Zahl zu interpretieren.

. Extrahieren des 5. Feldes (Attestierungszertifikat). Die Lange wird durch

das eindeutige Parsen des X.509-Zertifikats bestimmt (siche unten).

. Extrahieren des letzten Feldes (Signatur). Das Feld erstreckt sich bis zum

Ende des Bytestrings.

27

3. Implementation von Universal Second Factor

5. Das 1. Feld muss den Wert 0x05 besitzen.
6. Alle Felder fester Linge missen diese Liange besitzen.

7. Die Signatur muss durch das Attestierungszertifikat giiltig signiert wor-

den sein. Der Aufbau der von der Signatur authentifizierten Daten ist in

Abbildung [2.2] abzulesen.

Das Attestierungszertifikat ist DERFkodiert in dem Bytestring eingebettet.
Um es zu extrahieren, ist es erforderlich die Lange der &uflersten SEQUENCE der
Certificate [ASN.I}Struktur zu ermitteln. Wie genau dies zu tun ist, ist in
X.680 und X.690 spezifiziert [X.680, Abschnitt 8.4] [X.690, Abschnitte 8.1.2,
8.1.3.5, 8.9.1, 10.1].

Zur Priifung der Signatur mittels OpenSSL ist es erforderlich das Zertifikat
in das Privacy Enhanced Mail (PEM))-Format zu tiberfithren. Dazu ist es le-
diglich erforderlich das Zertifikat im [DERFFormat mittels base64 zu kodieren
und in das PEMI Armoring einzubetten:

Listing 3.4: PEM-Armoring von Zertifikaten.

Nachdem die Antwort tiberpriift wurde, gibt die Methode eine opake Struk-
tur zur Verarbeitung mittels generateSignRequest und verifySignResponse
zuriick. Diese Struktur enthélt den von der Smartcard tibermittelten offentli-

chen Schliissel, Schliisselbezeichner und die [[2E}F Version. Auflerdem wird ein

Standardwert fiir den streng monoton steigenden counter (0) eingebettet.

3.3.4. generateSignRequest

Diese Methode arbeitet ganz analog zu generateRegisterRequest. Ein Un-
terschied besteht darin, dass sie ein Array von Schliisseln entgegennimmt, die
bereits mit dem Benutzerkonto verkniipft sind. Ein Schliissel wird in diesem
Array durch die Struktur, die von verifyRegisterResponse zuriickgegeben
wird, reprasentiert. Ein weiterer Unterschied ist, dass der Riickgabewert keine
vordefinierte Struktur ist, sondern alle Felder der Struktur als einzelne Para-

meter an das JavaScript{AP]l iibergeben werden.

28

T = W N =

3.3. Kommunikation mit der Smartcard

3.3.5. verifySignResponse

Analog zu verifyRegisterResponse verarbeitet diese Methode die Antwort
auf eine Authentifizierungsanfrage, wie sie mit generateSignRequest erzeugt

wurde.

dictionary SignResponse {
DOMString keyHandle;
DOMString signatureData;
DOMString clientData;
s
Listing 3.5: Aufbau der SignResponse-Struktur [BBL15, Abschnitt 5.2.2].

keyHandle ist der Bezeichner des Schliissels, der schlussendlich die Authen-
tifizierungsanfrage bestatigt hat. signatureData ist die, in websafe-base64
kodierte, Antwort auf die Anfrage (sieche Abbildung [2.3). clientData ist,
wie bei verifyRegisterResponse, eine websafe-base64-kodierte ClientData-
Struktur.

Die Prifung von clientData erfolgt mit dem einzigen Unterschied, dass der
typ auf navigator.id.getAssertion lauten muss, identisch zu der Priifung
in verifyRegisterResponse.

signatureData ist wie folgt zu priifen:
1. Extrahieren aller 3 Felder tiber feste Byte-Offsets und Léange.

2. Uberpriifung der Bits des 1. Feldes (das Byte muss die Wertigkeit 0x01

besitzen).
3. Ermitteln des verwendeten Schliissels auf Basis von keyHandle.

4. Die Signatur muss durch den verwendeten Schliissel giiltig signiert wor-

den sein. Der Aufbau der von der Signatur authentifizierten Daten ist in
Abbildung [2.3] abzulesen.

5. Der counter-Wert muss hoher sein als der zuletzt bekannte counter-
Wert.

Damit der bei der Registrierung erhaltene 6ffentliche Schliissel zur Signatur-
priifung genutzt werden kann, ist es erforderlich ihn zu vervollstandigen (Ab-
schnitt [2.2.2)). In der Implementierung erfolgt dies bereits in verifyRegister

29

3. Implementation von Universal Second Factor

Response, da es nicht notwendig ist die Vervollstandigung bei jeder Authenti-
fizierung von vorne vorzunehmen. Zur Vervollstandigung wird die DERMNKodie-
rung der [ASN Il Struktur eines 6ffentlichen Schliissels aufgebaut und der erhal-
tene Kurvenpunkt darin eingebettet. Wie genau dies ablauft, ist in RFC 5480,
X.680 und X.690 definiert [RFC5480, Abschnitt 2] [X.680, Abschnitt 8.4] [X.690,
Abschnitte 8.1.2, 8.6.2.2, 8.19.1, 10.2]. Analog zum Attestierungszertifikat in
verifyRegisterResponse wird der Schliissel anschliefiend in das [PEMIFor-

mat konvertiert und dann an OpenSSL zur Signaturpriifung tibergeben.

Listing 3.6: PEM-Armoring von &ffentlichen Schliisseln.

Wenn die Antwort giiltig war, wird der counter-Wert des verwendeten
Schliissels aktualisiert und das aktualisierte Array der iibergebenen Schliissel

zuriickgegeben, damit diese in der Datenbank hinterlegt werden konnen.

3.4. Aktivierung des zweiten Faktors

Wenn der Nutzer eine neue Smartcard mit seinem Konto verkniipfen mochte,

dann sind dazu zwei Dinge erforderlich:

1. Der eindeutige Name fiir die Smartcard.

2. Der offentliche Schliissel der Smartcard.

Ersteres wird durch ein simples Formularfeld erfragt. Fiir letzteres wird beim
Aufruf des Formulars mittels generateRegisterRequest eine Challenge er-
stellt und in der Sitzung hinterlegt. Die notwendigen Daten fiir das JavaScript-
[APTlwerden direkt in den Hypertext Markup Language (HTMI)-Code der Ein-
richtungsseite eingebettet. Durch Betéatigen eines Knopfes sendet der Nutzer
die Challenge an die Smartcard und nachdem er die Nutzung der Smartcard
autorisiert, sendet diese die Antwort zuriick an den Webbrowser. Dieser ruft
dann die an das [AP]] iibergebene Callback-Funktion auf und diese hinterlegt
die Antwort in einem versteckten Formularfeld. Wenn der Benutzer mit seiner

Eingabe zufrieden ist, sendet er das Formular ab.

30

3.5. Uberpriifung des zweiten Faktors

Der Code, welcher das Formular entgegennimmt, priift, ob alle Felder ausge-
filllt wurden und ob eine giiltige Challenge in der Sitzung hinterlegt ist. Wenn
dies der Fall ist, wird die Antwort der Smartcard an verifyRegisterResponse
iibergeben und im Erfolgsfall wird ein neuer Datensatz fiir die Smartcard in
der Datenbank hinterlegt. Der Benutzer wird dann zuriick in die Liste seiner

Authentifizierungsmerkmale geleitet.

3.5. Uberpriifung des zweiten Faktors

Sobald die Mehrfaktor-Authentifizierung fiir ein Konto aktiviert ist, muss der
zweite Faktor in jeder neuen Sitzung tberpriift werden. Dazu wird in der
Sitzung der Zeitpunkt hinterlegt, zu dem zuletzt eine Mehrfaktor-Authenti-
fizierung durchgefiihrt wurde. Wenn dieser Zeitpunkt mehr als zwei Stundenﬂ
verstrichen ist (oder bislang kein Zeitpunkt hinterlegt ist), dann ist es er-
forderlich eine neue Authentifizierung durchzufiihren. Um diese Uberpriifung
sicherzustellen, wird unmittelbar nach Ermittlung des Nutzers und Lesen der
Sitzung iiberprift, ob mehr als zwei Stunden verstrichen sind. Wenn dies der
Fall ist und der aufgerufene [URTI nicht explizit freigeschaltet wurde (beispiels-
weise Impressum und die Seiten, die die Authentifizierung durchfithren), dann
wird der Nutzer in eine Liste seiner hinterlegten Merkmale umgeleitet und die
Anfrage abgebrochen. In dieser Liste wahlt der Nutzer dann das Merkmal, das
er verwenden mochte, und gelangt danach auf ein Formular mit dem er die
Authentifizierung durchfithren kann.

Im Falle von [U2F] wird analog zur Aktivierung des zweiten Faktors die Chal-
lenge generiert und in der Sitzung hinterlegt. Ebenso enthélt der HTMII Code
die notwendigen Parameter fur das JavaScript{APIl Mit Betétigen eines Knop-
fes sendet der Nutzer die Authentifizierungsanfrage an seine Smartcard. Nach-
dem er die Nutzung der Smartcard autorisiert hat, sendet diese die Antwort
zuriick an den Webbrowser, der die Callback-Funktion aufruft. Diese hinter-
legt die Antwort in einem versteckten Formularfeld und sendet das Formular
selbststandig ab.

Die Uberpriifung der gesendeten Formulardaten erfolgt analog zur Aktivie-

rung mittels verifySignResponse. Wenn die Daten giiltig sind, wird in der

?Dieser Zeitraum sollte der durchschnittlichen Sitzungslinge entsprechend gewihlt werden.
Wenn der Grofiteil der Nutzer die Anwendung mehr als zwei Stunden am Stiick nutzt,
dann sollte die Giiltigkeitsdauer der Authentifizierung entsprechend erhdht werden.

31

3. Implementation von Universal Second Factor

Sitzung der Zeitpunkt der letzten Authentifizierung hinterlegt und die Meta-
daten der Smartcard in der Datenbank aktualisiert, damit der counter-Wert
aktuell ist. Anschliefend wird der Nutzer auf die Startseite der Anwendung

zuriickgeleitet und kann sie, wie gewohnt, verwenden.

3.6. Fazit

Wie in den Abschnitten [3.2.2] und deutlich wird, sind nur geringe
Anderungen am Bestandssystem erforderlich, um es mit einer Mehrfaktor-Au-
thentifizierung auszustatten. Neben den zwei Anderungen an der Datenbank
muss lediglich eine Uberpriifung, ob der Nutzer bereits die Mehrfaktor-Authen-
tifizierung durchgefiihrt hat, direkt nach der Initialisierung der Sitzung erganzt
werden. Alle anderen Anderungen waren entweder vorbereitende MaBnahmen,
die in vielen Systemen bereits umgesetzt sind, oder neue Formulare, welche die
Einrichtung und Priifung der Merkmale vornehmen. Es ist also leicht méglich
zu priifen, dass die Anderungen am Bestandscode der Anwendung korrekt sind
und keine sicherheitskritischen Fehler einfiihren.

Zur Priifung der zweiten Zielsetzung wurde in der begleitenden Implemen-
tierung neben der Unterstiitzung fiir [[2H eine Unterstiitzung fiir Notfallcodes
(adhnlich einer [TAN}Liste) umgesetzt. Dafiir war es lediglich erforderlich die er-
laubten Werte der type-Spalte in der 2fa-Tabelle zu erweitern und zwei neue
Formulare zur Einrichtung und Priifung der Notfallcodes zu erganzen. Am
PHP}Quelltext der Anwendung waren keine Anderungen erforderlich. Insge-
samt wurden nur rund 220 Zeilen Code, die dadurch leicht von einem zweiten
Entwickler iiberprift werden koénnen, erganzt. Das System ist also modular

erweiterbar, falls in Zukunft weitere Verfahren gewtinscht werden.

32

4. Autorisierung

Die Realisierung einer sicheren Authentifizierung mittels mehrerer Faktoren
stand im Fokus von Kapitel 2] und [3] Damit ist die Zugriffskontrolle jedoch
nicht abgeschlossen. Nachdem jetzt sicher bestimmt werden kann, wer die
Anwendung gerade verwendet (Authentifizierung), muss auch noch tberpriift
werden, was diejenige Person in der Anwendung einsehen und verwenden darf
(Autorisierung). Eine sichere Autorisierung ist ohne eine sichere Authentifizie-
rung nicht zu realisieren: Es ist nicht zielfithrend bestimmte Funktionen nur
fir den Geschéftsfithrer eines Unternehmens zur Verfiigung zu stellen, wenn
sich gegeniiber der Anwendung jeder als Geschéftsfithrer ausgeben kann und
dies von der Anwendung akzeptiert wird. Umgekehrt ist die Authentifizierung
ohne gesonderte Autorisierung in vielen - aber nicht allen - Fallen ebenso un-
befriedigend, wie in Abschnitt noch genauer diskutiert wird.

Dieses Kapitel soll sich daher mit der Realisierung einer geeigneten Autori-
sierungsstrategie beschéftigen. Dabei werden verschiedene Konzepte zur Um-
setzung einer Autorisierung vorgestellt, die jeweils Vor- und Nachteile in Bezug
auf technische Komplexitat, Machtigkeit und administrative Verstandlichkeit
haben.

Fiir einige Anwendungsféille kann es sinnvoll sein, dass Zugriffsrechte dyna-
misch im System hinterlegt werden konnen. Beispielsweise konnte ein Profil
in einem sozialen Netzwerk nur fiir ausgewahlte Freunde zugénglich gemacht
werden sollen. Dazu konnte bei der Registrierung eines Nutzers automatisch
ein Recht ,Kann Profil von Max Mustermann aufrufen“ erzeugt und bei der
Loschung des Kontos wieder entfernt werden. Derartige Rechte sollten dem
Administrator in der zentralen Verwaltung, auch der Ubersichlichkeit halber,
nicht angezeigt werden. Es wére aber denkbar fiir Teammitglieder ein zen-
tral vergebenes Zugriffsrecht ,Kann alle Profile einsehen® anzulegen, das die

Prifung des spezifischen Rechtes aushebelt.

33

4. Autorisierung

4.1. Keine gesonderte Autorisierung

Diese Autorisierungsstrategie fiihrt keine Autorisierung durch. Jeder authenti-
fizierte Nutzer ist berechtigt alle Funktionen der Anwendung zu nutzen. Dieses
Verfahren ist offensichtlich technisch sehr einfach umzusetzen und auch die ad-
ministrative Verstandlichkeit ist sehr gut: Es muss nichts programmiert und
auch nichts eingestellt werden. Dafiir ist das Verfahren allerdings auch nicht
sehr machtig: Nutzer diirfen entweder alles oder nichts. Aus diesem Grund eig-
net sich diese Art der Autorisierung nur schlecht fiir Anwendungen in denen
der Nutzerkreis nicht tiberschaubar ist (etwa, weil Nutzer sich selbststédndig
registrieren konnen). Es wird unweigerlich zu Missbrauch kommen, sodass Zu-
griffsrechte fiir moderative Funktionen erforderlich werden.

Diese Autorisierungsstrategie wird beispielsweise vom Data Structure-Server
Redis verwendet: Jeder, der sich zu einem Redis-Server verbinden kann, kann
alle Befehle verwenden [San|. Dies bietet sich hier an, da der Kreis der Ver-
bindungsberechtigten ohnehin sehr klein ist (die Anwendung selbst und die
Systemadministratoren) und dadurch die Programmlogik von Redis einfacher
gestaltet sein kann. Ein weiterer Anwendungsfall fir Authentifizierung ohne
Autorisierung konnte eine unternehmensinterne Informationsseite sein, die nur
aus dem Intranet des Unternehmens zuganglich ist. Die Authentifizierung er-
folgt iiber die abrufende IP-Adresse. Es wére dann keine gesonderte Autorisie-
rung erforderlich, wenn keine sensiblen Informationen in diese Seite eingestellt

werden.

4.2. Rechtelevel

Ein Verfahren basierend auf Rechteleveln ordnet jedem Benutzer ein bestimm-
tes Zugriffslevel (in der Regel als Ganzzahl) zu. Den einzelnen Funktionen der
Anwendung wird ebenfalls eine Zahl zugeordnet - das Mindestlevel, um dieje-
nige Funktion nutzen zu kénnen. In der technischen Umsetzung muss lediglich
das Level des Nutzers gespeichert und bei den einzelnen Funktionen dieses
Level mit einem festen Wert verglichen werden. Auf administrativer Ebene
ist das Verfahren ebenfalls sehr simpel: Der Administrator muss nur das Level
des Benutzers auswihlen. Uber welches Level welche Funktionen zur Verfiigung
stehen, konnte unmittelbar neben dem Eingabefeld angezeigt werden, sodass es

unwahrscheinlich ist einen sicherheitsrelevanten Bedienfehler zu verursachen.

34

4.3. Vergabe einzelner Rechte an Nutzer

Jedoch ist auch dieses Verfahren nicht sehr méchtig: Es konnen nur Zugriffs-
rechte vergeben werden, die jeweils Teilmengen voneinander sind; ein hoheres
Level inkludiert auch alle Rechte eines niedrigeren Levels. Die einzelnen Kom-
petenzen einer komplexeren Anwendung lassen sich so im Regelfall nicht ab-
bilden. Verglichen mit den einzelnen Rechten in einem Unternehmen sollte die
PR-Abteilung keinen Zugriff auf die privaten Daten der Mitarbeiter erhalten.
Umgekehrt sollte die HR-Abteilung aus Sicherheitsgriinden keinen Zugriff auf
die Social-Media-Konten des Unternehmens erhalten. Keine der beiden Abtei-
lungen hat jeweils alle Rechte der anderen Abteilung, somit waren Rechtelevel
nicht méachtig genug diesen Fall abzudecken.

Diese Autorisierungsstrategie wird beispielsweise in Internet Relay Chat
(IRC)-Netzwerken verwendet. Pro Channel lassen sich die Level ,Voice* und
,Op* vergeben (in einigen Netzwerken noch weitere); jeder ,Op* hat dabei
automatisch auch die Rechte von ,Voice“. Auch die Minecraft Server-Software

regelt die Rechte von Operatoren tiber Zugriffslevel[129].

4.3. Vergabe einzelner Rechte an Nutzer

Hierbei werden einzelne Berechtigungen flexibel direkt an die registrierten Be-
nutzerkonten vergeben. In der technischen Umsetzung konnte dieses System
durch eine n:n-Relation ,Darf* zwischen dem Benutzer und der Berechtigung
realisiert werden. Zur Uberpriifung der Berechtigung muss dann gepriift wer-
den, ob die entsprechende Relation in der SQL-Datenbank existiert. Von admi-
nistrativer Seite konnten die unterschiedlichen Berechtigungen im ,,Benutzer-
bearbeiten“-Formular aufgelistet und durch Checkboxen erteilt werden. Fiir
den Administrator ist diese Autorisierungsstrategie also sehr transparent: Er
sieht unmittelbar, welche Rechte ein bestimmter Nutzer besitzt und Fehlkon-
figurationen sind leicht zu erkennen. Allerdings ist die Verwaltung sehr auf-
wandig: Wenn man einer gesamten Klasse von Nutzern (beispielsweise allen
Mitarbeitern der PR-Abteilung) eine neue Berechtigung erteilen oder nehmen
mochte, dann miissen eine Vielzahl von Benutzerkonten bearbeitet werden. Es
kann dabei leicht passieren, dass ein Benutzer vergessen wird.

Die Machtigkeit dieses Verfahrens ist direkt von den einzelnen Zugriffsrech-
ten abhdngig: Je feingranularer die einzelnen Rechte unterteilt werden, desto

préziser lassen sich die Zugriffsrechte vergeben. Im Gegensatz zu den Rechtele-

35

4. Autorisierung

veln (Abschnitt konnen auch Strukturen umgesetzt werden, bei denen sich
die einzelnen Funktionen nicht in eine Rangfolge unterteilen lassen. Die Zu-
griffsrechte sollten jedoch nicht zu differenziert unterteilt sein. Je mehr Rechte
im System existieren, desto hoher ist der Konfigurationsaufwand und die Feh-

leranfélligkeit.

4.4. Vergabe von Rechtegruppen an Nutzer

Rechtegruppen erweitern das in Abschnitt vorgestellte Verfahren um eine
Bundelung von Zugriffsrechten. Anstatt die Zugriffsrechte direkt an Nutzer
zu verteilen, werden die Rechte zu einer Rechtegruppe zusammengefasst und
diese Rechtegruppe dem Nutzer zugewiesen. Dies erleichtert es, die Zugriffs-
rechte fiir eine Vielzahl von Benutzern gleichzeitig anzupassen und umgeht
die oberhalb beschriebene Problematik des Vergessens einzelner Nutzer. Mit
dieser Verbesserung geht jedoch eine hohere Komplexitéit der technischen Um-
setzung einher. Es ist eine zusétzliche Tabelle fiir die Gruppen erforderlich
und die ,Darf“-Relation besteht nicht mehr zwischen Nutzer und Berechti-
gung, sondern zwischen Gruppe und Berechtigung. Stattdessen muss eine neue
1:n-Relation ,,Mitglied von* zwischen Nutzer und Gruppe geschaffen werden.
Auf administrativer Seite werden die Einstellungen etwas intransparenter: Es
ist nicht mehr direkt ersichtlich, welche einzelnen Rechte ein Nutzer hat, man
muss dazu wissen, was fiir Rechte die jeweilige Gruppe besitzt.

Grundséatzlich ist dieses Verfahren aber gleichméchtig zu der direkten Verga-
be von Rechten: Wenn man eine Rechtegruppe pro Nutzer anlegt, dann ist das
Verfahren praktisch identisch zu dem aus Abschnitt [£.3] Umgekehrt lasst sich
jede unterschiedliche Kombination an Rechten als Benutzergruppe darstellen

und einem Nutzer zuordnen.

4.5. Vergabe mehrerer Rechtegruppen an Nutzer

Die Vergabe mehrerer Rechtegruppen an Nutzer ist eine direkte Erweiterung
des vorherigen Verfahrens: Die ,Mitglied von“-Relation wird zu einer n:n-
Relation. Durch die Vergabe mehrerer Rechtegruppen steigt die Machtigkeit
auch dieses Verfahrens nicht an. Die Vergabe nur einer Rechtegruppe ist ein

Spezialfall der Vergabe mehrerer Rechtegruppen, umgekehrt kann man fiir je-

36

4.6. Wahl der Autorisierungsstrategie

de erdenkliche Kombination von Gruppen (alle Elemente der Potenzmenge)
eine einzelne Gruppe anlegen, welche das Resultat der Kombination darstellt.

Genauso wie die Vergabe von Rechtegruppen die Vergabe einzelner Rechte
flexibler und potentiell weniger aufwandig macht, macht die Vergabe mehrerer
Rechtegruppe die Vergabe von Rechtegruppen flexibler und potentiell weniger
aufwandig. Hier treffen aber die gleichen Nachteile zu: Durch die Erhéhung der
Flexibilitdt wird das System intransparenter. Der Administrator muss nicht
nur wissen, welche Rechte in einer einzelnen Gruppe vergeben sind, sondern
muss die Rechte aller vergebenen Gruppen im Detail kennen.

Auf technischer Seite stellt sich bei der Vergabe mehrerer Rechtegruppen die
Problematik des Zusammenfiihrens. Ein einzelnes Recht kann in einer Vielzahl
von Gruppen definiert sein. Wenn ein Recht nicht ausschliellich ein boolescher
Wert ist (beispielsweise ,Maximaler Speicherplatz in einer Cloud-Software),
dann konnen potentiell widerspriichliche Rechte in den Gruppen definiert sein.
Es muss also fiir jedes Recht genau definiert werden, was das Resultat ist, wenn
die Rechte der Gruppen eines Nutzers einander widersprechen.

Dieses Verfahren, tiblicherweise als Role-based access control (RBAC) be-
kannt [FK92], ist aufgrund seiner Flexibilitat weit verbreitet. So wird es bei-
spielsweise in abgewandelter Form fiir die Dateirechte von Unixoiden Betriebs-
systemen verwendet: Gruppen konnen drei verschiedene Rechte pro Datei ver-
geben werden. Benutzer kénnen einer Vielzahl von Gruppen angehoéren und
besitzen das Recht, wenn eine der Gruppen das Recht besitzt. Zusatzlich ist
es moglich, spezifisch fiir den Besitzer einer Datei unterschiedliche Rechte zu

definieren.

4.6. Wahl der Autorisierungsstrategie

Die in Abschnitt und .2 beschriebenen Strategien sind fiir die in dieser Ar-
beit erweiterte Anwendung fitnessKOMPLEX, ein umfangreicher Fitnesstra-
cker und -planer, unzureichend. Sportiibungen sollten nur von ausgebildeten
und vom Administrator explizit berechtigten Trainern angelegt werden kon-
nen. Die Ubungen von Laien kénnten die Gesundheit der Nutzer gefihrden.
Trainer sind aber nicht notwendigerweise im Unternehmen angestellt und soll-
ten daher keinen Zugriff auf die Oberfliche fiir die Kundenbetreuung haben.

Die Kundenbetreuung wird umgekehrt aber nicht notwendigerweise eine Trai-

37

4. Autorisierung

nerausbildung besitzen. Ebenso ware es denkbar, bestimmte Funktionen der
Anwendung nur gegen eine zusétzliche monatliche Gebiihr zur Verfiigung zu
stellen. Wenn es mehr als eine dieser Funktionen gibt, dann sind auch hier die
Zugriffsrechte keine Teilmengen voneinander.

Die anderen drei Verfahren sind, wie oberhalb festgestellt, gleichméchtig
und alle in der Lage die Rechtestrukturen abzubilden. Dennoch ist nur eines
der Verfahren wirklich sinnvoll: Die Pflege von Rechten, die direkt an einzelne
Nutzer vergeben werden, ist mit der bereits jetzt abzusehenden Komplexitéat
der Anwendung und den erwarteten Nutzerzahlen inpraktikabel. Die Verga-
be einzelner Gruppen wéare denkbar, wenn die Anwendung ausschliellich von
Nutzern mit einem klar abgegrenzten Aufgabengebiet genutzt wird. Sollten
die oberhalb beschriebenen kostenpflichtigen Add-ons fir die Mitgliedschaft
umgesetzt werden, so waren exponentiell viele Gruppen erforderlich, um alle
Kombinationen darzustellen.

Nachdem sich vier der fiinf vorgestellten Verfahren fiir den geplanten Ein-
satzzweck als untauglich erwiesen haben, wird deutlich, dass es sich anbietet
direkt auf die flexible Vergabe mehrerer Rechtegruppen an Nutzer zuriickzu-
greifen (Abschnitt , da diese keine offenkundigen Nachteile besitzt. Dieses
System ist zwar technisch am aufwindigsten umzusetzen und moglicherweise
fir den Administrator auch am schwierigsten zu erlernen, dafiir ist die Pflege
der Zugriffsrechte langfristig am tibersichtlichsten, sofern sinnvolle Bezeich-
nungen fiir die Benutzergruppen gewahlt und die einzelnen Zugriffsrechte lo-
gisch gruppiert an diese Gruppen vergeben werden (,, Trainer*, , Kundenbetreu-
ung®, ,Add-on: Werbefrei“, ,,Add-on: Einzelsitzung“). Nachfolgend soll daher
die technische Seite der Rechtepriifung, unter Verwendung dieses Verfahrens,

naher beleuchtet werden.

4.7. Umsetzung der gewahlten Strategie

Die notwendigen Anderungen an der SQL-Datenbank folgen direkt aus der
textuellen Beschreibung: Es wird jeweils eine Tabelle fiir Rechte (Permission)
und Rechtegruppen (Permissiongroup) angelegt. Dazu kommen noch zwei
Relationstabellen, um die Rechte mit Rechtegruppen (PermissionPermission

group) und die Rechtegruppen mit Nutzern (PermissiongroupPerson) zu ver-

kniipfen (Abbildung [4.1]).

38

4.7. Umsetzung der gewahlten Strategie

Person Permission
_id int [PA] Permissiongroup - permission_id int [PA]
- email varchar(128) [U,N] - permissiongroup_id int [PA] - permission varchar(255) [U]
- vorname varchar(128) [N] - name varchar(255) - type enum

- nachname varchar(128) [N] / \ - default_value varchar(255)

PermissionPermissiongroup

PermissiongroupPerson

- id int [PK,FK]
- permissiongroup_id int [PK,FK]

- permissiongroup_id int [PK,FK]
- permission_id int [PK,FK]
- value varchar(255)

Abbildung 4.1.: Datenbankschema mit den notwendigen Anderungen fiir Autori-
sierung mittels mehrerer Rechtegruppen pro Nutzer.

Innerhalb der Anwendung werden bei der Priifung eines Rechtes zuerst der
Typ und der Basiswert (default_value) ermittelt. AnschlieBend werden die
Werte aller Gruppen des Nutzers gelesen. Der Basiswert und die Werte der
Gruppen werden zur Ermittlung des Resultats abhangig vom Typ des Rechts
zusammengefiigt. In der Beispielimplementierung existiert lediglich der Typ
boolean fiir boolesche Werte. Der resultierende Wert ist true, wenn der Ba-

siswert oder der Wert mindestens einer Gruppe true ist und sonst false.

Algorithmus 4.1 Zusammenfithrung der Einzelwerte von Zugriffsrechten des
Typs boolean.
R + default_value
for all value € group_wvalues do
R < R or value
end for
return R

Fiir einen fiktiven Typ number, beispielsweise fiir eine maximale Anzahl von
etwas, konnte das Resultat entweder der hochste Einzelwert oder die Summe
aller Einzelwerte sein. Ersteres wird in den meisten Fallen die intuitivere Wahl
sein.

Zur Umsetzung der eingangs beschriebenen dynamischen Rechte ware es
denkbar die Permission-Tabelle um eine Spalte is_dynamic zu erweitern, die
bei positivem Wert das Recht vor dem Administrator verbirgt. Wenn ein der-
artiges dynamisches Recht erzeugt wird, fiigt die Anwendung dieses mit einem
generischen Bezeichner wie beispielsweise can_view_profile 123 mit ,Nicht

erlaubt“ als Basiswert in die Tabelle ein. 123 bezeichnet hier den Primérschliis-

39

4. Autorisierung

sel der Nutzertabelle. Damit ein Nutzer dieses Recht auch an andere Nutzer
vergeben kann, wird zusatzlich eine Rechtegruppe angelegt werden, welche
ebenfalls vor dem Administrator verborgen wird. Der Bezeichner der Grup-
pe ist beliebig, konnte der Einfachkeit halber identisch mit dem des Rechts
sein. Dieser Gruppe wird das Recht mit dem Wert Erlaubt® zugewiesen. Der
Nutzer konnte anschliefend tiber eine simple Eingabemaske die Mitglieder die-
ser Gruppe konfigurieren und somit entscheiden, wer sein Profil aufrufen darf.
Beim Aufruf eines Profils wird dann der konstante Teil des Bezeichners mit
dem jeweiligen Primarschliissel des aufgerufenen Profils konkateniert und an-

schliefend die Funktion zur Priifung des Rechts aufgerufen.

40

5. Fazit und Ausblick

Die Integration einer Mehrfaktorauthentifizierung ist mit geringem Aufwand
auch in bestehende Systeme moglich und erhoht die Sicherheit von Benutzer-
konten potentiell deutlich. Es ist jedoch nur mit einer Integration auf tech-
nischer Basis noch nicht getan. In Abschnitt 2.4 wurde bereits deutlich, dass
auch die Mitarbeiter der Nutzerbetreuung entsprechend geschult werden miis-
sen, damit die Sicherheit des Systems nicht ausgehebelt wird. Der menschliche
Faktor ist, wie auch in der Einleitung festgestellt [Unil6], noch immer eine
der grofiten Sicherheitsliicken. Damit einhergehend muss die User Experience
bei der Verwendung der Mehrfaktorauthentifierung so gestaltet sein, dass die
zusétzliche Authentifizierung dem Benutzer nicht unverhaltnisméafig zur Last
fallt oder er zudem den Mehrwert durch die Verwendung erkennt. Andernfalls
ist die Wahrscheinlichkeit hoch, dass der Benutzer die Mehrfaktorauthenti-
fizierung wieder deaktiviert - oder gar nicht erst aktiviert. [J2F] ist in der
Anschaffung mit Kosten verbunden, damit ist die Hiirde fiir die erstmalige
Verwendung relativ hoch. Dafiir ist die spéatere Nutzung sehr bequem, denn es
muss nur ein Knopf an der Smartcard betétigt werden. [TOTP] hingegen ist fiir
viele Menschen leicht zu nutzen, da ein grofier Teil der Bevolkerung bereits ein
Smartphone besitzt. Es muss aber bei jeder Authentifizierung das Smartpho-
ne genommen, entsperrt, die Anwendung gestartet und das Einmalkennwort
eingegeben werden. Ein Anbieter sollte also mehrere sichere Verfahren zur Au-
thentifizierung anbieten, um dem Nutzer verschiedene Auswahlmoglichkeiten
zu geben.

Auf technischer Seite muss regelméfig gepriift werden, ob die umgesetz-
ten Verfahren noch sicher sind oder anderfalls mittelfristig entfernt werden.
Dabei ist zu diskutieren, wie man mit Nutzern verfahrt, die ausschlieBlich un-
sichere Verfahren mit ihrem Konto verkniipft haben. Auch ist die Sicherheit
des Gesamtsystems nicht zu vernachléssigen. Die sicherste Mehrfaktorauthen-
tifizierung ist nutzlos, wenn die SQL-Datenbank mit allen Nutzerdaten ohne

Authentifizierung fir jedermann zuginglich ist. Nachfolgend finden sich da-

41

5. Fazit und Ausblick

her Ansétze zur weiteren Erhéhung des Sicherheitsniveaus durch zusétzliche
MafBnahmen sowie zur Verbesserung und dauerhaften Pflege des bereits Um-

gesetzten.

5.1. Zusatzliches Harten des Systems

Abhéangig von dem Wirtschaftssektor in dem sich die Anwendung befindet,
kann es als Dienstanbieter sinnvoll sein noch weitere Mafinahmen zu ergreifen,
um die Nutzerdaten zu schiitzen. Die Server einer Anwendung im Finanzsektor
sollten keine virtualisierten Server bei einem Cloud-Anbieter sein, sondern sich
direkt auf dem Grundstiick des Betreibers befinden und von einem speziell
ausgebildeten Sicherheitsdienst iiberwacht werden. Ebenso sollte hier auf eine
Verschliisselung der Festplatten aller beteiligten Server gesetzt werden.

Eine moglichst liickenlose Protokollierung aller Zugriffe ist auch in Bezug auf
die offentliche Wahrnehmung ein nicht zu unterschitzender Faktor. Im Falle
eines Datendiebstahls ist es fiir betroffene Nutzer beruhigender und transpa-
renter zu erfahren, dass die Ursache und alle betroffenen Informationen pré-
zise ermittelt werden konnten, der Fehler behoben wurde und dadurch auch
zukiinftig keine Gefahr mehr darstellt.

Bevor sich jedoch Gedanken tiber spezialisierte Abwehrmechanismen ge-
macht werden, muss die Basispflege der eingesetzten Systeme sichergestellt
werden. Wie auch beim heimischen Computer ist die regelmafBige Aktuali-
sierung aller eingesetzten Software-Komponenten essentiell. Auch sollten die
Entwickler geschult sein géngige Sicherheitsliicken in der selbst entwickelten
Anwendung zu vermeiden. Eine Liste gangiger Sicherheitsliicken wird unter

der Bezeichnung ‘Top 10 Project’ vom Open Web Application Security Pro-
ject (OWASP]) herausgegeben [Opeal.

5.2. Verbesserung der Beispielimplementierung

In der Beispielimplementierung gibt es noch einige wenige unrunde Stellen, die

fiir die produktive Verwendung verbessert werden sollten:

1. An erster Stelle steht hier die Verwendung der statisch kompilierten
OpenSSL-Binary (Abschnitt [3.2.3). OpenSSL enthielt bereits des o6f-

teren sicherheitsrelevante Programmierfehler [Opeb|. Durch das Nicht-

42

5.3. Ausblick

verwenden der durch das Betriebssystem bereitgestellten Version von
OpenSSL ist man gezwungen sich selbst iiber die Veroffentlichung von
neuen OpenSSL-Versionen zu informieren und gegebenenfalls die manuell
kompilierte Version von OpenSSL zu aktualisieren. Die zentral gestell-
te Version wird, wenn notig, durch den Hersteller des Betriebssystems
aktualisiert und fiir alle Programme durch die Paketverwaltung zur Ver-

fligung gestellt.

. Auch das Cookie-basierte Sitzungssystem ist fiir die produktive Verwen-
dung moglicherweise suboptimal: Die Anwendung hat keine Moglichkeit
Daten der Sitzung mit sofortiger Wirkung zu léschen oder zu &ndern.
Ein Nutzer mit bosartigen Absichten konnte dltere Versionen des Coo-
kies aufbewahren und diese fiir zukiinftige Anfragen erneut verwenden.
Im Kontext der Mehrfaktorauthentifizierung mittels [J2F fithrt dies wohl
nicht zu sicherheitsrelevanten Problemen: Durch den counter-Wert wer-
den Replay-Angriffe verhindert. Es wére aber denkbar, dass in Zukunft
weitere Informationen in dem Cookie hinterlegt werden, bei denen es
diesen Schutz nicht gibt. Mittelfristig sollte auf serverbasierte Sitzungen
umgestellt werden. Es wiirde ausreichen den Ordner der PHP-Sitzungen
zwischen den einzelnen Knoten zu synchronisieren oder einen Dienst wie

Redis |Fav]| zur Speicherung der PHP-Sitzungen zu verwenden.

. Der Ablauf zur Aktivierung und Authentifizierung mittels des zweiten
Faktors ist noch relativ umstéandlich und fiir unerfahrene Nutzer mogli-
cherweise unverstandlich. Dieser Arbeitsablauf kénnte von der Benutzer-
freundlichkeit her verbessert werden, beispielsweise indem die einzelnen
Schritte mit Screenshots oder Beschreibungen genauer erklart und einzel-
ne Schritte, wenn moglich, zusammengefasst werden. Andernfalls konnte
es zu der zu Beginn beschriebenen Nichtverwendung der Mehrfaktorau-

thentifizierung kommen.

5.3. Ausblick

Es werden regelméflig inharente Probleme in Verfahren zur Authentifizierung

und Speicherung von Authentifizierungsdaten gefunden. Wéhrend es noch vor

einigen Jahren tiblich war Kennworter mittels der [MD3l Hashfunktion ,,sicher*

43

5. Fazit und Ausblick

in der Datenbank abzulegen, gilt dies heutzutage nicht mehr als zeitgema$. Zu-
letzt wurde im Juli 2015 im Rahmen der Password Hashing Competition eine
neue Empfehlung (Argon2i) zur sicheren Speicherung von Kennwortern aus-
gesprochen [Aum)|. Es ist jedoch wahrscheinlich, dass auch bei Argon2i durch
Kryptoanalyse Fehler im Algorithmus gefunden werden, wodurch das Ermit-
teln eines so gespeicherten Kennworts wirtschaftlich wird. Die Sicherheit von
Verfahren zur Speicherung von Kennwortern muss also regelmafig im Kontext
des jeweils aktuellen Stands der Technik neu gepriift und gegebenenfalls ein
besseres Verfahren entwickelt werden.

Ebenfalls ein interessanter Gegenstand fiir weitere Forschung ist die kenn-
wortlose Authentifizierung: Durch die Tatsache, dass Dienste kein Kennwort
verlangen, kann auch kein Kennwort bei einem Angriff entwendet werden. Auch
kann der Nutzer sein Kennwort nicht vergessen, weil er keines benétigt. Die
Authentifizierung erfolgt beispielsweise iiber einen nur kurze Zeit giiltigen Link,
der an die hinterlegte E-Mail-Adresse gesendet wird. Verfahren, wie das mitt-
lerweile eingestellte Mozilla Persona, |[Larl4] hatten zum Ziel eine kennwortlose
Authentifizierung durch Integration in den Webbrowser massentauglich zu ma-
chen.

Es wird deutlich, dass es im Bereich der Authentifizierung und Autorisierung
noch Aspekte gibt, die nicht endgiiltig gelost sind und es moglicherweise auch
niemals werden. Diese wissenschaftliche Arbeit kann darauf aufgrund ihres
eigentlichen Fokus keine Antwort geben, aber ldsst sie daher fiir zukiinftige

Forschung offen.

44

A. Inhalt der beigelegten
CD-ROM

Auf der beigelegten CD-ROM finden sich, neben einer digitalen Version dieser
Arbeit, der Quelltext der in Kapitel Bl und [£.7] entwickelten Beispielimplemen-
tierung und etwaiger eingesetzter Drittbibliotheken.

Die Quelldateien sind UTF-8-kodiert und haben Unix-Zeilenenden (LF).

fitnessKkOMPLEX/* Die, um Mehrfaktorauthentifizierung und Autorisierung

erweiterte, Anwendung.

fitnessK OMPLEX.diff Ubersicht der Anderungen, die an der Anwendung vor-
genommen wurden. Dateien, die hier nicht aufgelistet sind, wurden un-

verdndert iibernommen.

fitnessKOMPLEX.tar Tar-Archiv des fitnessKOMPLEX-Ordners, damit

symbolische Verkniipfungen und Unix-Dateirechte erhalten bleiben.
LICENSE Liste der Lizenzen eingesetzter Drittbibliotheken.

openssl/* Quelltext der mitgelieferten, statisch kompilierten OpenSSL-Bina-

ry (siehe Abschnitt (3.2.3]).

U2F-Testscript/* Eigenstandiges Testskript fiir die in Abschnitt entwi-
ckelte PHP-Klasse zur Kommunikation mit einer [[2F}Smartcard. Zur
Verwendung ist ein PHP-fahiger Webserver mit TLS-Zertifikat notwen-
dig.

45

B. Einrichtung von Universal

Second Factor

Das [02F} Verfahren ist derzeit nur im Google Chrome (nativ) und Mozilla Fi-
refox (Add-on) [Chm| nutzbar. Bei Verwendung einer aktuellen Version von
Microsoft Windows sollte der Treiber fiir die Smartcard beim ersten Einste-
cken automatisch installiert werden. Fiir GNU /Linux-Systeme ist es im Regel-
fall erforderlich eine neue udev-Regel zu ergénzen, damit die Smartcard vom

Webbrowser angesteuert werden kann:

1. Herunterladen der aktuellen Regelversion von
https://github.com/Yubico/libu2f-host/blob/master/70-u2f.rules.

2. Speichern der Regel in /etc/udev/rules.d.

3. Neustart des Systems.

Zur Priifung der Funktionsfihigkeit der Smartcard kann die [J2Fl Demoseite

von Yubico genutzt werden:

1. Aufruf der Demo-Seite in einem kompatiblen Webbrowser:

https://demo.yubico.com/u2f.
2. Auswahl des Reiters ,Register*.

3. Eingabe von beliebigen Zugangsdaten (diese werden anschlieBend im

Klartext angezeigt).

4. Nach Absenden des Formulars: Betéitigung des Knopfes an der Smart-

card.

5. Es sollte gezeigt werden, dass die Registrierung erfolgreich war.

47

https://github.com/Yubico/libu2f-host/blob/master/70-u2f.rules
https://demo.yubico.com/u2f

Abkilirzungen

AES

API

ASN.1

CGI

DER

ECDSA

ELSTER

FIDO

FIPS

HMAC

HOTP

HTML

HTTP

IRC

JSON

MAC

MD5

NIST

oTP

Advanced Encryption Standard

Application Programming Interface

Abstract Syntax Notation One

Common Gateway Interface

Distinguished Encoding Rules

Elliptic Curve Digital Signature Algorithm
ELektronische STeuerERklarung

Fast IDentity Online

Federal Information Processing Standard
Keyed-Hash Message Authentication Code
HMACHBased One-Time Password Algorithm
Hypertext Markup Language

Hypertext Transfer Protocol

Internet Relay Chat

JavaScript Object Notation

Message Authentication Code
Message-Digest Algorithm 5

National Institute of Standards and Technology

One-Time Password

49

B. FEinrichtung von Universal Second Factor

OWASP
PEM
PGP
PHP
PIN
QR-Code
RBAC
RHEL
SHA
SIM
SMS
TAN
TLS
TOTP
U2F

URL

20

Open Web Application Security Project
Privacy Enhanced Mail

Pretty Good Privacy

PHP: Hypertext Preprocessor
Personliche Identifikationsnummer
Quick Response-Code

Role-based access control

Red Hat Enterprise Linux

Secure Hash Algorithm

Subscriber Identity Module

Short Message Service
Transaktionsnummer

Transport Layer Security

Time-based One-time Password Algorithm
Universal Second Factor

Uniform Resource Locator

Abbildungsverzeichnis

[2.1. Ablauf der Authentifizierung mit U2F|.)
[2.2. Autbau der Antwort auf einen u2f register request| 6
[2.3. Autbau der Antwort aut einen u2f sign request|. 8
[2.4. Ansicht der Einmalkennworter in Google Authenticator] 13
[2.5. QR-Code, der das TOTP-Shared Secret enthalt| 13
[3.1. Datenbankschema fur Mehrtfaktor-Authentifizierungl 24
[4.1. Datenbankschema fur Autorisierung mittels mehrerer Gruppen| . 39

ol

Algorithmenverzeichnis

[2.1. HMAC-based One-time Password Algorithm|
[2.2. Time-based One-time Password Algorithm| .

[4.1. Zusammenfuhrung der Einzelwerte von Zugriffsrechten|

53

Listingverzeichnis

[3.1. Autbau der RegisterRequest-Struktur| 26
[3.2. Autbau der RegisterResponse-Strukturf 26
(3.3. Aufbau der ClientData-Strukturd 27
[3.4. PEM-Armoring von Zertifikaten| 28
[3.5. Autbau der SignResponse-Strukturf 29
[3.6. PEM-Armoring von offentlichen Schlisseln| 30

95

Literatur

[129]

[Arc16]

[Aum]|

[BBL15]

[BE15]

[BH15]

[BL14]

[Chm]

129.69.226.230. Operator. URL: http://minecraft-de . gamepe
dia.com/index.php?title=0perator&diff=273711&o0ldid=
216053 (besucht am 24.11.2016).

Scott Arciszewski. Updated constraint on OpenSSL. Okt. 2016.
URL: https://github.com/defuse/php-encryption/pull/
309#issuecomment-253472651 (besucht am 17.11.2016).

Jean-Philippe Aumasson. Password Hashing Competition. URL:
https://password-hashing.net/ (besucht am 05.12.2016).

Dirk Balfanz, Arnar Birgisson und Juan Lang. FIDO U2F Java-
seript API Mai 2015. URL: https://fidoalliance.org/specs/
fido-u2f-javascript-api-ps-20150514.pdf|

Dirk Balfanz und Jakob Ehrensvard. FIDO U2F Raw Message
Formats. Mai 2015. URL: https://fidoalliance. org/specs/
fido-u2f-raw-message-formats—ps—-20150514.pdf|

Dirk Balfanz und Brad Hill. FIDO AppID and Facet Specification.
Mai 2015. URL: https://fidoalliance . org/specs/fido-
appid-and-facets-ps-20150514.pdf.

Daniel J. Bernstein und Tanja Lange. SafeCurves: Introduction.
Jan. 2014. URL: https://safecurves.cr.yp.to/ (besucht am
12.11.2016).

Pawet Chmielowski. U2F Support Add-On. URL: https://addon
s.mozilla.org/en-GB/firefox/addon/u2f-support-add-on/
(besucht am 11.11.2016).

57

http://minecraft-de.gamepedia.com/index.php?title=Operator&diff=273711&oldid=216053
http://minecraft-de.gamepedia.com/index.php?title=Operator&diff=273711&oldid=216053
http://minecraft-de.gamepedia.com/index.php?title=Operator&diff=273711&oldid=216053
https://github.com/defuse/php-encryption/pull/309#issuecomment-253472651
https://github.com/defuse/php-encryption/pull/309#issuecomment-253472651
https://password-hashing.net/
https://fidoalliance.org/specs/fido-u2f-javascript-api-ps-20150514.pdf
https://fidoalliance.org/specs/fido-u2f-javascript-api-ps-20150514.pdf
https://fidoalliance.org/specs/fido-u2f-raw-message-formats-ps-20150514.pdf
https://fidoalliance.org/specs/fido-u2f-raw-message-formats-ps-20150514.pdf
https://fidoalliance.org/specs/fido-appid-and-facets-ps-20150514.pdf
https://fidoalliance.org/specs/fido-appid-and-facets-ps-20150514.pdf
https://safecurves.cr.yp.to/
https://addons.mozilla.org/en-GB/firefox/addon/u2f-support-add-on/
https://addons.mozilla.org/en-GB/firefox/addon/u2f-support-add-on/

Literatur

[Eyel5]

[Fav]

[Fed]

[FID14]

[FK92]

[Git16]

[Goo]

[Gool4]

[Gool5]

o8

EyeLock Inc. FyeLock’s myris Is First and Only Iris Authenti-
cator for New FIDO Open Industry Standard. Jan. 2015. URL:
http : //www . prnewswire . com/news - releases / eyelocks -
myris-is—-first-and-only-iris—-authenticator-for-new-
fido-open-industry-standard-300015710.html (besucht am
11.11.2016).

Nicolas Favre-Felix. PHP Session handler. URL: https://github

.com/phpredis/phpredis#php-session-handler (besucht am
27.11.2016).

Federal Financial Institutions Examination Council. Authentica-
tion in an Internet Banking Environment. URL: https://www.

ffiec.gov/pdf/authentication_guidance.pdf.

FIDO Alliance. FIDO 1.0 Specifications are Published and Final
Preparing for Broad Industry Adoption of Strong Authentication
in 2015. Dez. 2014. URL: https://fidoalliance.org/fido-

1.0-specifications - published-and-final/ (besucht am
11.11.2016).

David F. Ferraiolo und D. Richard Kuhn. Role-Based Access Con-
trols. Okt. 1992. URL: https://web . archive . org/web/201
60303234840 /http: //csrc . nist . gov/groups /SNS/rbac/
documents/ferraiolo-kuhn-92.pdf (besucht am 24.11.2016).

GitHub, Inc. Email replies disclose “mute the thread” token. Sep.
2016. URL: https://bounty.github.com/researchers/h8rry.
html (besucht am 11.11.2016).

Google Inc. Google Authenticator. URL: https://play.google.
com/store/apps/details7id=com. google . android . apps .

authenticator2l

Google Inc. u2f-api.js. 2014. URL: https://github.com/google/
u2f -ref - code/blob/80a30a38178aba277c4cc13df36c82671d
85d881 / u2f - gae - demo / war / js /u2f - api . js (besucht am
17.11.2016).

Google Inc. Key Uri Format. 2015. URL: https://github.com/g
oogle/google-authenticator/wiki/Key-Uri-Format (besucht
am 11.11.2016).

http://www.prnewswire.com/news-releases/eyelocks-myris-is-first-and-only-iris-authenticator-for-new-fido-open-industry-standard-300015710.html
http://www.prnewswire.com/news-releases/eyelocks-myris-is-first-and-only-iris-authenticator-for-new-fido-open-industry-standard-300015710.html
http://www.prnewswire.com/news-releases/eyelocks-myris-is-first-and-only-iris-authenticator-for-new-fido-open-industry-standard-300015710.html
https://github.com/phpredis/phpredis#php-session-handler
https://github.com/phpredis/phpredis#php-session-handler
https://www.ffiec.gov/pdf/authentication_guidance.pdf
https://www.ffiec.gov/pdf/authentication_guidance.pdf
https://fidoalliance.org/fido-1.0-specifications-published-and-final/
https://fidoalliance.org/fido-1.0-specifications-published-and-final/
https://web.archive.org/web/20160303234840/http://csrc.nist.gov/groups/SNS/rbac/documents/ferraiolo-kuhn-92.pdf
https://web.archive.org/web/20160303234840/http://csrc.nist.gov/groups/SNS/rbac/documents/ferraiolo-kuhn-92.pdf
https://web.archive.org/web/20160303234840/http://csrc.nist.gov/groups/SNS/rbac/documents/ferraiolo-kuhn-92.pdf
https://bounty.github.com/researchers/h8rry.html
https://bounty.github.com/researchers/h8rry.html
https://play.google.com/store/apps/details?id=com.google.android.apps.authenticator2
https://play.google.com/store/apps/details?id=com.google.android.apps.authenticator2
https://play.google.com/store/apps/details?id=com.google.android.apps.authenticator2
https://github.com/google/u2f-ref-code/blob/80a30a38178a5a277c4cc13df36c82671d85d881/u2f-gae-demo/war/js/u2f-api.js
https://github.com/google/u2f-ref-code/blob/80a30a38178a5a277c4cc13df36c82671d85d881/u2f-gae-demo/war/js/u2f-api.js
https://github.com/google/u2f-ref-code/blob/80a30a38178a5a277c4cc13df36c82671d85d881/u2f-gae-demo/war/js/u2f-api.js
https://github.com/google/google-authenticator/wiki/Key-Uri-Format
https://github.com/google/google-authenticator/wiki/Key-Uri-Format

[HIBP]

[Hor]

[Larl4]

[Mar]

[MI16]

[Nat13]

[Opeal

[Opeb]

[RFC2104]

[RFC2617]

[RFC3174]

Literatur

‘i—have i been pwned? URL: https://haveibeenpwned.com/| (be-
sucht am 11.11.2016).

Taylor Hornby. php-encryption. URL: https://github.com/def
use/php-encryption/tree/v1.2.1 (besucht am 14.11.2016).

Frederic Lardinois. Mozilla Stops Developing Its Persona Sign-
In System Due To Low Adoption. Mérz 2014. URL: https://
techcrunch. com/2014/03/08/mozilla-stops-developing-
its-persona-sign-in-system-because-of-low-adoption/
(besucht am 05.12.2016).

Devin Martin. KeeOtp. URL: http://keepass. info/plugins.
html#keeotp (besucht am 11.11.2016).

Yusuf Motara und Barry Irwin. “SHA-1 and the Strict Avalanche
Criterion”. In: CoRR abs/1609.00616 (2016). URL: http://arxi
v.org/abs/1609.00616.

National Institute of Standards and Technology. Digital Signature
Standard (DSS). Juli 2013. URL: http://nvlpubs.nist.gov/ni
stpubs/FIPS/NIST.FIPS.186-4.pdf (besucht am 09.11.2016).

Open Web Application Security Project. Category:OWASP Top
Ten Project. URL: https://www.owasp.org/index.php/Catego
ry:0WASP_Top_Ten_Project (besucht am 03.12.2016).

OpenSSL Software Foundation. Vulnerabilities. URL: https://

www . openssl.org/news/vulnerabilities.html (besucht am
27.11.2016).

Hugo Krawczyk, Mihir Bellare und Ran Canetti. HMAC: Keyed-
Hashing for Message Authentication. RFC 2104. RFC Editor, Feb.
1997. URL: http://www.rfc-editor.org/rfc/rfc2104. txtl

John Franks u.a. HTTP Authentication: Basic and Digest Access
Authentication. RFC 2617. RFC Editor, Juni 1999. URL: http:
//www.rfc-editor.org/rfc/rfc2617.txt.

D. Eastlake und P. Jones. US Secure Hash Algorithm 1 (SHA1).
RFC 3174. RFC Editor, Sep. 2001. URL: http://www.rfc-
editor.org/rfc/rfc3174.txt.

99

https://haveibeenpwned.com/
https://github.com/defuse/php-encryption/tree/v1.2.1
https://github.com/defuse/php-encryption/tree/v1.2.1
https://techcrunch.com/2014/03/08/mozilla-stops-developing-its-persona-sign-in-system-because-of-low-adoption/
https://techcrunch.com/2014/03/08/mozilla-stops-developing-its-persona-sign-in-system-because-of-low-adoption/
https://techcrunch.com/2014/03/08/mozilla-stops-developing-its-persona-sign-in-system-because-of-low-adoption/
http://keepass.info/plugins.html#keeotp
http://keepass.info/plugins.html#keeotp
http://arxiv.org/abs/1609.00616
http://arxiv.org/abs/1609.00616
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.openssl.org/news/vulnerabilities.html
https://www.openssl.org/news/vulnerabilities.html
http://www.rfc-editor.org/rfc/rfc2104.txt
http://www.rfc-editor.org/rfc/rfc2617.txt
http://www.rfc-editor.org/rfc/rfc2617.txt
http://www.rfc-editor.org/rfc/rfc3174.txt
http://www.rfc-editor.org/rfc/rfc3174.txt

Literatur

[RFC4226]

[REC4648]

[RFC5280]

[RFC5480]

[RFC6238]

[RFC6265]

[San]

[sec]

[Sri+15]

[The]

[Unil6]

60

D. M’Raihi u.a. HOTP: An HMAC-Based One-Time Password
Algorithm. RFC 4226. RFC Editor, Dez. 2005. URL: http://
www.rfc-editor.org/rfc/rfc4226.txt.

S. Josefsson. The Basel6, Base32, and Baseb4 Data Encodings.
RFC 4648. RFC Editor, Okt. 2006. URL: http://www.rfc-
editor.org/rfc/rfc4648.txt.

D. Cooper u.a. Internet X.509 Public Key Infrastructure Certi-
ficate and Certificate Revocation List (CRL) Profile. RFC 5280.
RFC Editor, Mai 2008. URL: http://www.rfc-editor. org/
rfc/rfc5280.txt.

S. Turner u.a. Elliptic Curve Cryptography Subject Public Key
Information. RFC 5480. RFC Editor, Marz 2009. URL: http :
//www.rfc-editor.org/rfc/rfcb5480.txt.

D. M’Raihi u.a. TOTP: Time-Based One-Time Password Algo-
rithm. RFC 6238. RFC Editor, Mai 2011. URL: http://www.rfc-
editor.org/rfc/rfc6238.txt.

A. Barth. HTTP State Management Mechanism. RFC 6265. RFC
Editor, Apr. 2011. URL: http://www.rfc-editor.org/rfc/
rfc6265. txtl

Salvatore Sanfilippo. Redis Security. URL: http://redis. io/
topics/security (besucht am 24.11.2016).

secunet Security Networks AG. Sicherheitsstick fir ELSTER. URL:
https://www.sicherheitsstick.de/ (besucht am 11.11.2016).

Sampath Srinivas u. a. Universal 2nd Factor (U2F) Overview. Mai
2015. URL: https ://fidoalliance . org/specs/fido-u2f -
overview-ps—-20150514.pdf|

The PHP Group. Session Handling. URL: http ://php . net/
manual/en/book.session.php (besucht am 14.11.2016).

University of Luxembourg. Social engineering: password in ex-
change for chocolate. Mai 2016. URL: http://wwwen.uni.lu/uni
versity/news/latest news/social engineering password_

in_exchange for_chocolate (besucht am 11.11.2016).

http://www.rfc-editor.org/rfc/rfc4226.txt
http://www.rfc-editor.org/rfc/rfc4226.txt
http://www.rfc-editor.org/rfc/rfc4648.txt
http://www.rfc-editor.org/rfc/rfc4648.txt
http://www.rfc-editor.org/rfc/rfc5280.txt
http://www.rfc-editor.org/rfc/rfc5280.txt
http://www.rfc-editor.org/rfc/rfc5480.txt
http://www.rfc-editor.org/rfc/rfc5480.txt
http://www.rfc-editor.org/rfc/rfc6238.txt
http://www.rfc-editor.org/rfc/rfc6238.txt
http://www.rfc-editor.org/rfc/rfc6265.txt
http://www.rfc-editor.org/rfc/rfc6265.txt
http://redis.io/topics/security
http://redis.io/topics/security
https://www.sicherheitsstick.de/
https://fidoalliance.org/specs/fido-u2f-overview-ps-20150514.pdf
https://fidoalliance.org/specs/fido-u2f-overview-ps-20150514.pdf
http://php.net/manual/en/book.session.php
http://php.net/manual/en/book.session.php
http://wwwen.uni.lu/university/news/latest_news/social_engineering_password_in_exchange_for_chocolate
http://wwwen.uni.lu/university/news/latest_news/social_engineering_password_in_exchange_for_chocolate
http://wwwen.uni.lu/university/news/latest_news/social_engineering_password_in_exchange_for_chocolate

[X.680]

[X.690]

[Yub]

Literatur

International Telecommunication Union. Information Technology
— Abstract Syntaz Notation One (ASN.1): Specification of Basic
Notation. ITU-T Recommendation X.680. Juli 2002. URL: http:
//www.itu.int/ITU-T/studygroups/coml7/languages/X.
680-0207 . pdf.

International Telecommunication Union. Information Technolo-
gy — ASN.1 Encoding Rules — Specification of Basic Encoding
Rules (BER), Canonical Encoding Rules (CER), and Distinguis-
hed Encoding Rules (DER). ITU-T Recommendation X.690. Juli
2002. URL: http://www.itu.int/ITU-T/studygroups/coml7/
languages/X.690-0207 . pdf.

Yubico AB. U2F — FIDO Universal 2nd Factor Authentication.
URL: https ://www. yubico . com/about /background/fido/
(besucht am 11.11.2016).

61

http://www.itu.int/ITU-T/studygroups/com17/languages/X.680-0207.pdf
http://www.itu.int/ITU-T/studygroups/com17/languages/X.680-0207.pdf
http://www.itu.int/ITU-T/studygroups/com17/languages/X.680-0207.pdf
http://www.itu.int/ITU-T/studygroups/com17/languages/X.690-0207.pdf
http://www.itu.int/ITU-T/studygroups/com17/languages/X.690-0207.pdf
https://www.yubico.com/about/background/fido/

Eidesstattliche Erklarung

Hiermit versichere ich, dass die vorliegende Arbeit iiber secureFIT - Mehrfak-
tor-Authentifizierung und Autorisierung selbststédndig verfasst worden ist, dass
keine anderen Quellen und Hilfsmittel als die angegebenen benutzt worden sind
und dass die Stellen der Arbeit, die anderen Werken — auch elektronischen Me-
dien — dem Wortlaut oder Sinn nach entnommen wurden, auf jeden Fall unter

Angabe der Quelle als Entlehnung kenntlich gemacht worden sind.

Tim Disterhus, Sassenberg, 12. Dezember 2016

Ich erkldre mich mit einem Abgleich der Arbeit mit anderen Texten zwecks
Auffindung von Ubereinstimmungen sowie mit einer zu diesem Zweck vorzu-

nehmenden Speicherung der Arbeit in eine Datenbank einverstanden.

Tim Diisterhus, Sassenberg, 12. Dezember 2016

63

	Einleitung
	Zweifaktor-Authentifizierung
	Einführung
	Universal Second Factor
	Voraussetzungen
	Funktionsweise
	Analyse des Verfahrens
	Vergleich mit anderen Smartcard-Verfahren

	Time-based One-time Password Algorithm
	Voraussetzungen
	Funktionsweise
	Analyse des Verfahrens
	Vergleich mit anderen Einmalkennwort-Verfahren

	Verlust des zweiten Faktors

	Implementation von Universal Second Factor
	Vorstellung des bestehenden Systems
	Voraussetzungen schaffen
	Sitzungssystem
	Datenbanktabellen
	OpenSSL

	Kommunikation mit der Smartcard
	__construct
	generateRegisterRequest
	verifyRegisterResponse
	generateSignRequest
	verifySignResponse

	Aktivierung des zweiten Faktors
	Überprüfung des zweiten Faktors
	Fazit

	Autorisierung
	Keine gesonderte Autorisierung
	Rechtelevel
	Vergabe einzelner Rechte an Nutzer
	Vergabe von Rechtegruppen an Nutzer
	Vergabe mehrerer Rechtegruppen an Nutzer
	Wahl der Autorisierungsstrategie
	Umsetzung der gewählten Strategie

	Fazit und Ausblick
	Zusätzliches Härten des Systems
	Verbesserung der Beispielimplementierung
	Ausblick

	Inhalt der beigelegten CD-ROM
	Einrichtung von Universal Second Factor

