—— WWU

MUNSTER

Eine vergleichende Untersuchung von
exaktem, durch Schranken

beschleunigtem k-means-Clustering

MASTERARBEIT
zur Erlangung des akademischen Grades

MASTER OF SCIENCE

vorgelegt von:

Tim Wolfgang Diisterhus

Thema gestellt von:
Prof. Dr. Christian Beecks

Zweitprifer:

Prof. Dr. Xiaoyi Jiang

Minster, 9. Januar 2020

Abstract

Diese Arbeit analysiert die Leistung von sechs durch Schranken beschleunigten
Algorithmen zum exakten k-means-Clustering. Im ersten Teil wird durch eine
systematische Zerlegung der Algorithmen untersucht, welche Einzelkomponen-
ten genutzt werden, um Rechenaufwand einzusparen. Es lasst sich feststellen,
dass sich die Einzelkomponenten konzeptionell in mehreren Algorithmen wie-
derfinden. Insgesamt ergeben sich bei der Zerlegung der sechs Algorithmen
drei unterschiedliche Arten von unteren Schranken zwischen Datenpunkten
und Clusterzentren. Es werden zwei zuséatzliche Informationen tiber die Posi-
tionen der Clusterzentren erfasst. Zuletzt lassen sich zwei weitere Techniken
zur effizienteren Datenhaltung finden, die auf jeden untersuchten Algorithmus
anwendbar sind. Anschliefend wird diskutiert, wie sich die Algorithmen aus
den vorgestellten Einzelkomponenten zusammensetzen.

Im zweiten Teil dieser Arbeit wurden die Algorithmen geméfl der Beschrei-
bung in ihren Originalveroffentlichungen in C++ implementiert. Soweit dies
sinnvoll méglich war, wurden Varianten der Algorithmen erstellt, bei denen
zusétzliche Komponenten integriert oder deaktiviert wurden. Auch im Falle
mehrerer plausibler Interpretationen der Beschreibung wurden unterschiedliche
Varianten des Algorithmus implementiert. Insgesamt ergeben sich 39 Varianten,
deren Leistung bei jeweils identischer Startsituation empirisch mit unterschied-
lichen Datensétzen tiberpriift wurde. Es stellt sich heraus, dass geringe Modifi-
kationen einen grofien Einfluss auf die Leistung haben. Auch bei identischen
Einzelkomponenten konnen abhéngig von der konkreten Zusammensetzung
des Algorithmus grofie Leistungsunterschiede bestehen. Insbesondere kann es
mitunter sinnvoll sein, Einzelkomponenten zu deaktivieren, da der Overhead in

der konkreten Kombination hoher als die Zeitersparnis ist.

1ii

Inhaltsverzeichnis

1. Einleitung] 1
2. _Das k-means-Problem 3
2.1. Der Lloyd-Algorithmus| 4
2.1.1. Zuordnung der Datenpunkte. 6
2.1.2. Verschiebung der Clusterzentren 6
2.1.3. Konvergenz| L. 6
2.1.4. Beispiell o o 7
2.1.5. Initialisierung| 0oL 8
12.1.6. Einschrankungen und Probleme 8

2.2. Die Optimierung| 13
2.3. Abgrenzung zu anderen Clustering-Verfahren| 14
3. Beschleunigung von k-means| 17
3.1, Initialisierung| 17
3.2. Schrankenlo 18
13.2.1. Aktualisierung der Schranken| 21
3.2.2. Obere Schrankel 23
3.2.3. Untere Schrankel 23

13.3. Weitere Pruningkriterien| 27
3.3.1. Center-Center-Distanzen| 28
3.3.2. Distanz zu einem Fixpunkt (,Norm“). 29

13.4. Sonstige Verbesserungen|o 30
3.4.1. Normof Sums 30
13.4.2. Delta Updates 31
13.4.3. Nebenlaufigkeit| 33

3.5. Fckdaten der Techniken| 33
13.6. KEinsatz in den Algorithmen| 35
3.6.1. Elkanl oo 35
13.6.2. Hamerly|. o0 37
........................... 39
3.6.4. Annulus 42
13.6.5. Exponion| 44

Inhaltsverzeichnis

13.6.6. Yinyang|o 49

4. rwen nsa 53
4.1. Beschreibung der Datensatze, 53
4.2. Eckdaten der Datensatze o7

5. Praktische Umsetzung| 59
b.1. Designentscheidungen 59
15.2. Konkrete Umsetzung der Designentscheidungen| 61

6. Empirische Untersuchung] 69
6.1. Methodiklo 69
6.2. Beurteilungskriterien|o 72
6.3. Beurteilung| oo 75
6.3.1. Vergleich der Algorithmen| 75

6.3.2. Verhalten der Datensatzel 89

6.3.3. Analyse der Algorithmen|. 97

7. Fazit und Ausblick 111
A. Datensatze 117
B. Inhalt der beigelegten CD-ROM]| 121

vi

Einleitung

Menschen beschéftigen sich schon seit Jahrhunderten mit der Analyse von
Daten . Zu Beginn geschah dies manuell, mit Stift und Papier. Mit der
Erfindung der Rechenmaschinen und Computer konnte diese Arbeit erleichtert
werden. Heutzutage leben wir im Zeitalter von ,Big Data® Sekiindlich werden
fast 30 TB Daten neu geschaffen und vollautomatisch verarbeitet,
gefiltert, sortiert, analysiert und klassifiziert. Alleine der weltgrofite Internet-
Exchange DE-CIX in Frankfurt am Main leitet im Jahresmittel 4,1 Terabit
Daten pro Sekunde durch [DEC].

Unternehmen haben ein Interesse daran, dass diese Datenverarbeitung mog-
lichst schnell und effizient ablauft. Schnell ist hier sowohl in Bezug auf die
Realzeit, als auch in Bezug auf die CPU-Zeit zu verstehen. Die realzeitliche
Komponente ist leicht zu erkennen: Menschen warten nicht gerne. Der Com-
puter soll das gewtlinschte Ergebnis im Idealfall ,sofort® liefern. Ein anderer
Anwendungsfall ist Hochfrequenzhandel. Dort entscheiden Millisekunden tiber
die Hohe der Gewinne beziehungsweise der Verluste . Aber auch die
[CPUZeit darf nicht aufler Acht gelassen werden. Eine hochparallele Implemen-
tierung kann sehr kurze Reaktionszeiten liefern. Um diese Leistung in der Praxis
jedoch zu erreichen, wiirde potentiell Hardware im Wert von hunderttausenden
Euro benotigt. Neben den Anschaffungskosten fiir die Hardware wird fiir jede
Berechnung selbstverstiandlich auch elektrischer Strom und eine angemessene
Kiihlung der einzelnen Komponenten benotigt. Im Rahmen der aktuellen Dis-
kussionen zur ,,Klimakrise“ besteht fiir Unternehmen ein Anreiz, sich durch
effizientere Software und dem damit verbundenen geringeren Ressourcenver-
brauch als besonders 6kologisch handelnd auf dem Markt zu positionieren.
Betreiber von Rechenzentren, Webhostingpaketen und Mietservern werben

beispielsweise damit, dass sie ausschlieflich Okostrom beziehen.

Kapitel 1. FEinleitung

Es besteht somit ein Bedarf an der Entwicklung effizienter Algorithmen, die
auch fiir grofle und weiter steigende Datenmengen schnell und ressourcenscho-
nend arbeiten und die gewiinschten Ergebnisse liefern.

In dieser Arbeit soll es um die Untersuchung von Methoden zum Clustering
von Daten, konkret um Algorithmen der k-means-Familie gehen. Beim Cluste-
ring wird als Eingabe ein Datenbestand ohne néhere Informationen zum Inhalt
ibergeben. Der Algorithmus versucht anschliefend selbststandig (,,unsuper-
vised“) Muster in diesen Daten zu finden und diese in Gruppen (,,Cluster)
aufzuteilen. Daten innerhalb eines resultierenden Clusters sind sich ,ahnlich®,
Daten unterschiedlicher Cluster ,unahnlich®. Die konkrete Ausgestaltung der
,Ahnlichkeit“ ist abhingig vom eingesetzten Clustering-Algorithmus und der
Struktur des iibergebenen Datenbestands.

Zunéchst soll in Kapitel |2 das k-means-Problem im Detail vorgestellt werden.
Es wird diskutiert, wie Clustering mit einem k-means-Algorithmus funktio-
niert, wie die resultierenden Cluster beschaffen sind und welche grundsétzlichen
Vor- und Nachteile beziehungsweise welche Einschrankungen die Wahl eines
k-means-Algorithmus mit sich bringt. Kapitel |3| zerlegt die in dieser Arbeit
untersuchten Algorithmen zum beschleunigten, exakten, k-means-Clustering
zunachst systematisch in ihre Einzelbestandteile und untersucht anschlieflend,
wie diese zum fertigen Algorithmus zusammengefiigt werden. Nachdem die
Funktionsweise aus der theoretischen Perspektive hinreichend aufgeschliisselt
ist, soll es in Kapitel 4f um die Testdatensédtze gehen, die genutzt werden, um
die theoretischen Leistungsmerkmale auf ihre Praxistauglichkeit zu untersuchen.
Dazu wird in Kapitel |5 zunachst vorgestellt, welche Designentscheidungen in
der konkreten Implementierung getroffen wurden und anschlieBend werden
die resultierenden Messdaten des Clusterings der Datensétze bei verschiede-
nen Algorithmen und Algorithmenkonfigurationen in Kapitel [6] vergleichend

untersucht.

Das k-means-Problem

Die wohl am haufigsten verwendete und in dieser Arbeit betrachtete Familie
von Algorithmen zum Clustern von Daten ist die k-means-Familie [Wu+08].
Gegeben

1. einer gewtinschten Anzahl von Clustern k& und
2. einer Menge von Datenpunkten (P)

ist es das Ziel des k-means-Problems k Clusterzentren (C') zu finden, sodass die
Summe (J) der quadratischen euklidischen Distanzen zwischen Clusterzentren

und ihren jeweils zugeordneten Datenpunkten (A(c)) minimiert wird:

J = Z Z d(p, c)? (2.1)
)

ceC peA(c

d(p,c) = llp = cll,

Aus diesen Anforderungen ergibt sich, dass die Datenpunkte ihrem jeweils
nachstgelegenen Clusterzentrum zugeordnet werden und die Position der Clus-
terzentren dem geometrischen Schwerpunkt aller Datenpunkte eines Clusters,
also dem namensgebenden komponentenweisen arithmetischen Mittel (englisch
~mean*), entspricht.

Als Resultat entsteht eine Voronoi-Partitionierung des Raumes. Die entstehen-
den Cluster sind konvexe Polygone, die durch ihr Clusterzentrum reprasentiert

werden.

Das Finden der exakten Losung des k-means-Problems, also das Erreichen
des globalen Minimums, ist NP-schwer [MNV12|. Das Finden eines lokalen Mi-

nimums (in seltenen Féllen eines Sattelpunktes) ist allerdings effizient moglich.

Kapitel 2. Das k-means-Problem
Variablen

Zunéchst mochten wir die in dieser Arbeit verwendeten Variablen und Bezeich-

ner definieren:

P = Die Menge aller Datenpunkte.

N = |P|, die Anzahl der Datenpunkte.

D = Ein Datenpunkt.

C = Die Menge aller Clusterzentren.

k = |C|, die Anzahl der gewiinschten Cluster.

c = Ein Clusterzentrum.

J = Der Wert der Zielfunktion.

d = Eine Distanzfunktion (die euklidische Distanz).

Ac) = Die Menge der dem Clusterzentrum c zugeordneten
Datenpunkte.

a(p) = Das einem Datenpunkt p zugewiesene Clusterzentrum.

u(...) = Eine obere Schranke. Parameter und Bedeutung sind abhéngig

vom Algorithmus.

[(...) = Eine untere Schranke. Parameter und Bedeutung sind abhangig
vom Algorithmus.

cc(cy, cg) = Der Abstand zwischen den Clusterzentren ¢; und cs.

ccg(c) = Der minimale Abstand cc(c, ¢) fiir ¢ # c.

2.1. Der Lloyd-Algorithmus

Fine der ersten und die wohl popularste Implementierung von k-means ist
der Algorithmus von Lloyd |Elk03; Ham10; Dral2|. Dieser wird daher typi-

scherweise als der k-means-Algorithmus bezeichnet. Nach der Initialisierung,

bei der k Punkte als initiale Clusterzentren ausgewéhlt werden, werden zwei
Phasen, die jeweils die Zielfunktion verringern, abwechselnd wiederholt, bis der
Algorithmus konvergiert. Die Auswahl dieser initialen Clusterzentren wird in
den Abschnitten und [3.1] genauer betrachtet.

Insgesamt ergibt sich die in Algorithmus dargestellte Struktur fiir den
Lloyd-Algorithmus.

2.1. Der Lloyd-Algorithmus

Algorithmus 2.1 Hauptschleife des Lloyd-Algorithmus.
1: SELECTINITIALCENTERS()
2: Jpew — 00
3: repeat
4 J — Jhew
5: ASSIGNPOINTSTOCLUSTER()
6
7
8

MOVECENTERS()
: Jnew < GETBADNESS()
cuntil Je, > J

Algorithmus 2.2 Berechnung der Zielfunktion des Lloyd-Algorithmus.
1: function GETBADNESS
2 J <0
3 for all c € C' do
4: for all p € A(c) do
5: J < J+D(p,c)?
6
7
8
9:

end for
end for
return J
end function

Algorithmus 2.3 Zuordnung der Datenpunkte beim Lloyd-Algorithmus.
1: procedure ASSIGNPOINTSTOCLUSTER
2 for all p € P do

3 nearest <— 1

4: nearest_dist <+ oo

5: for all c € C' do
6

7

8

9

dist < D(p, ¢)
if dist < nearest_dist then
nearest <— c
: nearest dist < dist
10: end if

11: end for
12: ASSIGNPOINTTOCLUSTER (p, nearest)
13: end for

14: end procedure

Kapitel 2. Das k-means-Problem

2.1.1. Zuordnung der Datenpunkte

In diesem Schritt werden fiir alle Datenpunkte die jeweils nachstgelegenen Clus-
terzentren ermittelt. Dazu ist es notwendig, fiir jeden Datenpunkt die Distanz
zu jedem Clusterzentrum zu berechnen. Anschliefend wird der Datenpunkt
dem Zentrum mit der geringsten Distanz zugeordnet.

Dadurch, dass iiber alle Datenpunkte und Clusterzentren iteriert wird (Al-
gorithmus [2.3)), entsteht eine Laufzeitkomplexitét von ©(k - N) mit genau so

vielen Distanzberechnungen.

2.1.2. Verschiebung der Clusterzentren

Nachdem die Neuzuordnung der Datenpunkte abgeschlossen ist, wird die Positi-
on der Clusterzentren korrigiert. Um die Summe der quadratischen euklidischen
Distanzen innerhalb eines Clusters und somit auch die globale Fehlersumme
zu minimieren, muss die Position des Clusterzentrums in den geometrischen
Schwerpunkt (englisch ,,Centroid*) des Clusters verschoben werden [Gz].
Falls der Algorithmus noch nicht konvergiert ist, fithrt diese Verschiebung
dazu, dass Datenpunkte sich nun ndher an einem anderen als ihrem bisher
zugeordneten Clusterzentrum befinden. Die erste Phase, die Zuordnung der

Datenpunkte, muss daher erneut durchgefiithrt werden.

2.1.3. Konvergenz

Da die Anzahl der méglichen Zustande durch die Anzahl der Cluster (k) und die
Anzahl der Datenpunkte (N) auf die Stirling-Zahl zweiter Art S N7 beschrénkt
ist, konvergiert der Lloyd-Algorithmus in endlicher Zeit.

Dartiber hinaus ist leicht zu sehen, dass beide Phasen jeweils monoton die
Zielfunktion verringern: Die Zuordnung eines Punktes zum néchstgelegenen
Zentrum minimiert die (quadratische) Distanz fiir den Punkt. Die Verschiebung
des Clusterzentrums in den Schwerpunkt minimiert die Summe der quadra-
tischen Distanzen innerhalb des Clusters. Die Zielfunktion ist nicht-negativ,
die monotone Verringerung dieser fithrt daher ebenfalls zwangslaufig zu einer

Konvergenz in endlicher Zeit.

!Die Stirling-Zahl zweiter Art gibt an, auf wie viele Arten eine n-elementige Menge in k

nicht-leere, disjunkte Teilmengen aufgeteilt werden kann: Sy, x = 7 Z?Zl(—l)k*j (];)]"

2.1. Der Lloyd-Algorithmus

2.1.4. Beispiel

In Abbildung findet sich ein beispielhafter Verlauf von k-means-Clustering
mit Hilfe des Lloyd-Algorithmus fiir einen simplen Datensatz mit 14 Daten-
punkten. Diese sind in drei natiirliche, konvexe und etwa gleich grofle Cluster
aufgeteilt und die Anzahl der gewiinschten Clusterzentren ist als k = 3 gewéhlt.
Es ist daher zu erwarten, dass die finalen Positionen der Clusterzentren genau

in den natiirlichen Clustern liegen.

Dies ist nach drei Iterationen der Fall. In Iteration 3 hat keine Neuzuordnung
stattgefunden (es gibt keinen blau markierten Datenpunkt), daher terminiert

der Algorithmus.

°
6 ° L I -
° °
4 [1) =
°
2+ ° o0 -
°
[I
0 | | | |

0 2 4 6
(c) Nach Iteration 2. (d) Nach Iteration 3.

Abbildung 2.1.: Die aktuellen Clusterzentren sind rot markiert. Zu Beginn liegen sie
genau auf drei Datenpunkten. Die blau markierten Datenpunkte
haben nach der Verschiebung der Clusterzentren in der jeweiligen
Iteration ihre Zuordnung geédndert.

Kapitel 2. Das k-means-Problem

2.1.5. Initialisierung

Die Auswahl der initialen Clusterzentren hat einen entscheidenden Einfluss auf
die Qualitdt des resultierenden Clusterings und auf die Anzahl der bendtigten
[terationen bis zur Konvergenz.

Abbildung zeigt beispielhaft den Einfluss der Initialisierung auf die
Qualitat des Ergebnisses. Die Datenpunkte liegen in diesem Beispiel auf den
Eckpunkten eines Rechtecks. Abhédngig von der Initialisierung liegen die resul-
tierenden Clusterzentren entweder auf den Mittelpunkten der langen Seiten
(lokales Minimum) oder auf den Mittelpunkten der kurzen Seiten (globales
Minimum).

Eine Initialisierung, die als initiale Clusterzentren Punkte auswéhlt, die nah
an der konvergierten Position des Zentrums liegen, reduziert die Anzahl der
benotigten Iterationen. Eine Veranschaulichung findet sich in Abbildung [2.3]
In wurden beide initialen Clusterzentren im gleichen natiirlichen Cluster
platziert. Dies fithrt dazu, dass die Grenze der beiden Voronoi-Zellen den linken
Cluster teilt. Diese fehlerhafte Zuordnung kann erst in der dritten Iteration
vollstandig korrigiert werden.

Beide Zielsetzungen korrelieren miteinander. Eine Auswahl von initialen
Clusterzentren, die die Wahrscheinlichkeit eines ,,schlechten® lokalen Minimums
verringert, fithrt dazu, dass sich die Zentren bereits im Bereich eines moglichen
Zielclusters und damit in der Nahe ihrer endgiiltigen Position befinden.

Das in dieser Arbeit genutzte Initialisierungsverfahren k-means++ wird in
Abschnitt niher vorgestellt.

2.1.6. Einschriankungen und Probleme

Die Einfachheit des k-means-Problems und des Lloyd-Algorithmus bringt einige
Einschrankungen und Probleme mit sich. Einige Einschrankungen sind inherent
mit dem k-means-Problem verkniipft (etwa ,arithmetisches Mittel notwendig®),
andere sind in der Konstruktion des Lloyd-Algorithmus zu verorten (etwa

,Leere Cluster konnen entstehen).

Arithmetisches Mittel notwendig

Das k-means-Problem setzt die Existenz des namensgebenden arithmetischen

Mittels beziehungsweise der euklidischen Distanz voraus. Dadurch sind die

—2

2.1. Der Lloyd-Algorithmus

B 921 .
° ° ° °
B 0l .
° ° ° °
B 9| .
= 0 > = 0 >

(a) Konvergiert zu (0,1) und (0, —1). (b) Konvergiert zu (—2,0) und (2,0).

Abbildung 2.2.: Abhingig von der Initialisierung erreicht die Zielfunktion bei diesen

Datenpunkten entweder 4 - 22 = 16 oder 4 - 12 = 4. Die ,rot“en
Punkte stellen die als initiale Clusterzentren gewéhlten Punkte

dar.

4, |
2, -
eoeo eoeo
(eeeoee XN NN
eoo eoe
9] B
_47\ | \7
-3 0 Y

(a) Benotigt drei Iterationen zur Kon-(b) Bendtigt eine Iteration zur Kon-

vergenz.

vergenz.

Abbildung 2.3.: In beiden Féllen konvergiert der Algorithmus zum gleichen Er-

gebnis (—3.5,0) und (3.5,0). Im ersten Fall werden aber zwei
zusétzliche Iterationen bendtigt, da der Grofiteil der Punkte des
linken Clusters zundchst dem rechten Cluster zugeordnet wird. Die
Grenze der Voronoi-Zerlegung ist mit einer Linie gekennzeichnet.

Kapitel 2. Das k-means-Problem

Datenpunkte auf numerische Werte beschréankt, ein Clustering von nicht-

numerischen Daten ist nicht moglich.

Clustermodell

Bedingt dadurch, dass das k-means-Problem die Cluster durch einen Stell-
vertreter, das Clusterzentrum, beschreibt und die Clusterzugehorigkeit von
der Distanz zu diesem Stellvertreter statt der Distanz zum néchstgelegenen
Datenpunkt abhangig macht, ist die Losung des k-means-Problems stets eine
Menge von konvexen Clustern (Abbildung [2.4al).

Dariiber hinaus fithrt dies dazu, dass bei starken Groéflenunterschieden geo-
metrisch benachbarter Cluster die Randpunkte des grofleren Clusters aufgrund

der hohen Distanz zum Clusterzentrum des groferen Clusters dem kleineren,

aber dennoch deutlich separierten Cluster zugeordnet werden (Abbildung [2.4bj).

Ausreifler

Ein weiterer Effekt des verwendeten Clustermodells ist die fehlende Behandlung
von Ausreiflern. Jeder Punkt wird einem Cluster zugeordnet und nimmt an
der Berechnung des Clusterzentrums teil. In Abbildung ist beispielhaft

dargestellt, wie Ausreifler das Ergebnis verdndern kénnen.

k muss bekannt sein

Eine weitere Einschrankung, die sich aus der fehlenden Beriicksichtigung der
intra-Cluster-Distanzen ergibt, ist, dass die Anzahl der gewtnschten Cluster
k explizit als Eingabewert tibergeben werden muss. Eine Losung fiir diese
Problematik ist es, den Algorithmus iterativ mit steigendem k durchzufiihren,
bis die Verbesserung der Zielfunktion J abflacht (Abbildung [2.6). An diesem
Punkt ist es sehr wahrscheinlich, dass ein grofler natiirlicher Cluster in zwei
kleinere Cluster aufgeteilt wurde und keine weiteren natiirlichen Cluster mehr
gefunden werden. Alternativ kann fiir jedes resultierende Clustering der Sil-
houettenkoeffizient berechnet werden. Dieser ist in der Berechnung deutlich
aufwandiger. Distanzen miissen von jeden Datenpunkt zu jedem anderen Da-
tenpunkt berechnet werden. Fiir weniger klar separierte natiirliche Cluster ist

dieser aber genauer als die Betrachtung der k-means-Zielfunktion.

10

2.1. Der Lloyd-Algorithmus

6 . i |
0 A
41 : 41 |
2|] 3f]
2| - -
O L | | |
4 6
(a) Fiir die beiden Cluster lasst sich (b) Das Zentrum des kleineren Clus-
keine Trenngerade finden. ters ist weniger als der Durchmes-

ser des groferen Clusters von des-
sen Randpunkten entfernt.

Abbildung 2.4.: In beiden Féllen sind die Cluster optisch klar voneinander separiert.
Die Losung des k-means-Problems sind aber nicht die natiirlichen
Cluster.

(a) Ohne Ausreifler. (b) Mit Ausreifiern.

Abbildung 2.5.: Die Ausreifler fithren dazu, dass das rechte Clusterzentrum sich
auflerhalb des Clusters befindet. Der ,,blau* markierte Punkt an
der Clustergrenze wird daher falsch zugeordnet.

11

Kapitel 2. Das k-means-Problem

1014 1

10 ¢ ~

= 4

1012 1

1013 1

1 15 30 1 15 30
k k
(a) Fehler in Abhéngigkeit der (b) Verbesserung des Fehlers im
Clusteranzahl k. Vergleich zum vorherigen k.

Abbildung 2.6.: Fehler beim Clustering des s1-Datensatzes (Seite fiir steigen-
de k. Ein Abflachen bei k = 15 ist deutlich zu erkennen und
spiegelt sich auch in der Verbesserung des Fehlers wieder.

Leere Cluster konnen entstehen

Als Folge des vorzugebenden k£ ist es bei einer schlechten Wahl und ungtinstiger
Initialisierung moglich, dass ein Clusterzentrum im Laufe des Algorithmus
fiir keinen Punkt das néchstgelegene Zentrum ist und daher einen leeren
Cluster repréasentiert. Bei der Verschiebung in den Schwerpunkt dieses leeren
Clusters kommt es zu einer Division durch 0. Als Losung koénnten betroffene
Clusterzentren auf einen zuféllig gewahlten Datenpunkt gesetzt werden. Dies
reduziert in jedem Falle die Zielfunktion, da die quadratische Distanz von
diesem Datenpunkt zu seinem néchstgelegenen Zentrum den Wert 0 annimmt.

Ein Beispiel findet sich in Abbildung [2.7. Die Datenpunkte bilden entweder

zwei oder vier natiirliche Cluster, abhéngig davon, ob die drei rechten Punkte

41 : 4 o
20 : 2 o
[]
°)
[] []
oL e | oL ‘ e
0 2 4 0 2 4
(a) Vor der 1. Iteration. (b) Nach der 1. Iteration.

Abbildung 2.7.: Nach der 1. Iteration wird dem mittleren Clusterzentrum kein
Punkt mehr zugeordnet.

12

2.2. Die Optimierung

jeweils einen Cluster bilden oder nicht. Es wurde aber k = 3 gewédhlt und zwei
der initialen Clusterzentren befinden sich im linken Cluster. Dies fithrt nach der
ersten Iteration dazu, dass ein Clusterzentrum genau zwischen allen Punkten

liegt und daher von jedem Punkt zu weit entfernt ist.

2.2. Die Optimierung

Der unverdnderte Lloyd-Algorithmus fiithrt in der in Abschnitt vorge-
stellten Zuordnungsphase viele redundante Distanzberechnungen durch. Ein
Datenpunkt, der eine geringe Entfernung zu seinem derzeit zugeordneten Clus-
terzentrum besitzt, wird in der néchsten Zuordnungsphase in der Regel nicht
neu zugeordnet, sondern ist weiterhin naher an seinem derzeit zugeordneten
Zentrum, verglichen mit allen anderen Zentren.

Wenn sich Clusterzentren mit geringem Zusatzaufwand ausschliefen (,,pru-

nen“) lassen, konnen, potentiell teure, Distanzberechnungen eingespart werden.

Definition 1 (Pruning)
Mit ,,Pruning” wird die Moglichkeit bezeichnet, ohne exakte Distanzberech-
nungen zu bestimmen, ob ein Clusterzentrums potentiell das einem Punkt

nachstgelegene ist.

Allen in dieser Arbeit untersuchten Algorithmen ist gemein, dass sie schran-
kenbasiert prunen und exakt sind. Wir mochten diese beiden Eigenschaften

definieren.
Definition 2 (Schrankenbasierter Algorithmus)

Ein schrankenbasierter Algorithmus pruned Clusterzentren auf Basis

o einer oberen Schranke der Entfernung zum néachstgelegenen Clusterzen-

trum

o einer Menge von unteren Schranken, die Aussagen iiber die Entfernung

zu anderen Clusterzentren treffen

o und gegebenenfalls zusétzlichen Informationen, die in Verbindung mit

den Schranken ein Pruningkriterium herleiten.

Schrankenbasierte Algorithmen bieten den Vorteil, dass diese fiir die Spei-

cherung der zusatzlichen Informationen simple Datenstrukturen nutzen koén-

13

Kapitel 2. Das k-means-Problem

nen. Eine obere Schranke pro Datenpunkt konnte effizient durch ein lineares
Feld? von Distanzwerten reprisentiert werden. Dariiber sind schrankenbasierte
Indexstrukturen weniger stark als Baume vom , Fluch der Dimensionalitat*
betroffen Abschnitt 6; [Ham10, Abschnitt 2.2].

Eine nicht-schrankenbasierte exakte k-means-Variante auf Basis von kd-
Béaumen wurde in [Kan+02] vorgestellt.

Definition 3 (Exakter Algorithmus)
Ein exakter Algorithmus liefert nach jeder Iteration die gleichen Positionen der

Clusterzentren wie der Lloyd-Algorithmus.

-

Exakte Algorithmen bieten den Vorteil, dass diese die erprobten Eigen-
schaften des Lloyd-Algorithmus beibehalten. Anwendungen, die Wert auf die
bewéhrte Qualitidt der Ergebnisse des Lloyd-Algorithmus legen, konnen auf
diese Weise beschleunigt werden, ohne Gefahr zu laufen, dass die Ergebnis-
se des Clusterings fehlerhaft oder von unzureichender Genauigkeit sind. Es
muss keine langwierige Priifung des Algorithmus auf Praxistauglichkeit fiir den
gewiinschten Einsatzzweck durchgefiihrt werden.

Im Gegensatz zu exakten Algorithmen stehen beispielsweise das probabilis-
tische Mini-batch k-means, das bei jeder Iteration nur einen kleinen Teil der
Datenpunkte auswahlt , und Recursive Partition Based K-Means, das
die Datenpunkte in immer kleinere Partitionen aufteilt und die Ergebnisse der
vorherigen Iteration als Startwert fiir die néchste Iteration verwendet [CPL17].

2.3. Abgrenzung zu anderen

Clustering-Verfahren

Neben den beschleunigten k-means-Varianten im vorherigen Abschnitt moch-
ten wir an dieser Stelle noch einige andere Algorithmen zum Clustering von

Datensatzen nennen und die Unterschiede zu k-means kurz herausstellen.

k-median

Der k-median [BMS96] kann als Variante von k-means, bei dem die verwen-

dete Distanz in der Zielfunktion nicht die quadratierte euklidische Distanz,

2Auch bezeichnet als Array oder Vektor.

14

2.3. Abgrenzung zu anderen Clustering-Verfahren

sondern die Manhattan-Distanz ist, aufgefasst werden. Statt durch eine Ver-
schiebung in den geometrischen Schwerpunkt wird diese durch Auswahl des

komponentenweisen (geometrischen) Medians minimiert.

Entsprechend kann der k-median auch dann verwendet werden, wenn die
Bildung eines arithmetischen Mittels nicht, der Median und die Manhattan-
Distanz aber berechnet werden kénnen. Ein weiterer Vorteil ist die Robustheit
des Median gegeniiber Ausreifiern. In geringer Anzahl ist die Beeinflussung der
Position der Clusterzentren zu vernachlassigen. Dem gegentiber steht die erhohte
Komplexitit bei der Berechnung des Medians. Als holistische Funktion kann
dieser im Gegensatz zum algebraischen arithmetischen Mittel nicht inkrementell

und schwieriger parallel berechnet werden.

Da der Grofteil der in dieser Arbeit vorgestellten Optimierungen rein auf die
Eigenschaften einer Metrik aufbautrf] und der k-median lediglich die Distanz-
funktion austauscht, konnen diese auf den k-median angewendet und dieser

analog beschleunigt werden.

Partitioning Around Medoids

Der auch als k-medoid bezeichnete, in [KJ09|, Kapitel 2] vorgestellte, Partitioning
Around Medoids (PAM) ermittelt analog zu k-means und k-median k& durch
Clusterzentren reprasentierte Cluster. Das Clustermodell entspricht dem Clus-
termodell des k-means. Als Zielfunktion wird die Summe der Distanzen von

allen Punkten zu ihrem nachstgelegenen Clusterzentrum verwendet.

Genau wie beim k-means werden die Datenpunkte in jeder Iteration ihrem
jeweils nédchstgelegenen Clusterzentrum zugeordnet. Die Aktualisierung der
Clusterzentren unterscheidet sich aber deutlich: Jedes Clusterzentrum wird mit
einem diesem Clusterzentrum zugeordneten Datenpunkt so vertauscht, dass
die Zielfunktion minimiert wird.

Daraus folgt unmittelbar, dass die einzige an die Datenpunkte gestellte
Anforderung ist, dass eine Distanzfunktion existiert. Dadurch kann fir
beliebige Daten eingesetzt werden. Es entsteht aber eine im Vergleich zum

k-means deutlich erhohte Laufzeitkomplexitét.

3Einige Optimierungen beschleunigen die Neuberechnung des Clusterzentrums und sind
daher nicht anwendbar.

15

Kapitel 2. Das k-means-Problem

Density-based spatial clustering of applications with

noise

Ein Clusteringalgorithmus, der es nicht erfordert, dass die Anzahl der Clus-
ter vorgegeben wird ist der Density-based spatial clustering of applications
with noise (DBSCAN]) [Est+96]. Dieser ermittelt auf Basis einer als Einga-
be tibergebenen maximalen Distanz (,dichtebasiert”) zu den nachstgelegenen
Datenpunkten selbststandig die Clusterzugehorigkeiten, bis alle Datenpunkte
entweder einem Cluster zugeordnet oder als Ausreifler ausgeschlossen wurden.
Auf diese Weise ist von keiner der in Abschnitt genannten
Probleme und Einschrankungen betroffen.

Aufgrund dieser Funktionsweise besitzt der im Vergleich zum k-
means und auch eine erhohte Laufzeitkomplexitdt. Distanzen miissen
nicht nur zu Clusterzentren oder Punkten innerhalb eines Clusters, sondern

potentiell zu jedem anderen Datenpunkt berechnet werden.

16

Beschleunigung von k-means

Nachdem in Kapitel [2| die grundsétzliche Funktionsweise des Lloyd-Algorithmus
zur Losung des k-means-Problems hinreichend erldutert wurde, soll in den
Abschnitten |3.1] bis |3.5| die Funktionsweise der Einzelkomponenten schrankenba-
sierter exakter k-means-Algorithmen vorgestellt werden. Anschliefend wird in
Abschnitt diskutiert, wie diese Einzelkomponenten in konkret benennbaren

Algorithmen zum Einsatz kommen.

3.1. Initialisierung

Wie in Abschnitt bereits untersucht, ist die Initialisierung von hoher
Wichtigkeit fiir die Qualitiat des Ergebnisses, sowie fir die Anzahl der benotigten
Iterationen und somit die Laufzeit des Clusterings. Ein populédres Verfahren,
das nach aktuellem Kenntnisstand eine iiberdurchschnittlich gute Initialisierung
liefert, ist k-means++, vorgestellt in [AV07]. [CKV12] empfiehlt unter anderem

die Verwendung von ,,Greedy k-means++“, einer k-means+-+-Variante, die den
Worst Case von k-means++ verbessern soll.

Da alle in dieser Arbeit betrachteten Algorithmen exakte Algorithmen sind,
hat die Initialisierung auf alle Algorithmen den gleichen Einfluss. Wir stellen
in dieser Arbeit daher nur den unmodifizierten k-means+-+-Algorithmus vor.

k-means++ ist ein probabilistischer Algorithmus. Nach der Auswahl eines
zufilligen ersten Clusterzentrums werden alle weiteren Clusterzentren mit einer
Wahrscheinlichkeit proportional zu ihrer quadratischen Distanz zum néachst-
gelegenen, bereits ausgewahlten Clusterzentrum ausgewéhlt. Dieses Verfahren
fiihrt dazu, dass Punkte in moglichst weit entfernten Clustern ausgewéhlt
werden, ohne dass die Auswahl auf einen Ausreifler fillt. Letztere besitzen zwar
eine hohe Distanz zu anderen Datenpunkten, dies wird aber durch die héhere
Anzahl an Punkten innerhalb der natiirlichen Cluster ausgeglichen, sodass jeder

Punkt eines Clusters fiir sich genommen zwar eine niedrige Chance zur Auswahl

17

Kapitel 3. Beschleunigung von k-means

hat, der Cluster in Summe aber eine hohe. Ein Beispiel dafiir findet sich in
Abbildung [3.1]

Insgesamt vermeidet k-means++ es auf diese Weise, mehrere initiale Cluster-
zentren im selben natiirlichen Cluster auszuwéhlen. Diese miissten anschlieend
aufwindig aufgetrennt werden (Abbildung , was abhangig von der geo-
metrischen Beschaffenheit nicht immer gelingt und dadurch die Qualitit des
Ergebnisses mindert. Abbildung zeigt dies beispielhaft. Die Anzahl der
zu findenden Cluster k entspricht genau der Anzahl der natiirlichen Cluster.
Dadurch, dass alle initialen Cluster aus dem nattrlichen Cluster um (0,0)
gewéhlt wurden, konnten die Cluster nicht sauber aufgetrennt werden.

Stattdessen werden die initialen Clusterzentren mit hoher Wahrscheinlichkeit
in ihren Zielclustern platziert, sodass bei klar separierten natiirlichen Clustern
lediglich die Verschiebung in den Schwerpunkt von Noten ist.

k-means++ verbessert auf diese Weise sowohl die Qualitat des Ergebnisseﬂ

als auch die benotigte Laufzeit.

3.2. Schranken

Grundlage der Beschleunigung von k-means durch Schranken sind die drei

Eigenschaften einer metrischen Distanzfunktion (d), insbesondere der Dreiecks-
ungleichung (3.3)).

Definition 4 (Metrische Distanzfunktion und Dreiecksungleichung)

Folgende Gleichungen gelten fiir eine metrische Distanzfunktion d(-, -):

d(z,y) > 0Nd(z,y) <= == 3.1
d(z,y) = d(y, z) 3.2
d(z,2z) <d(z,y)+d(y, 2) (3.3)

Die Dreiecksungleichung erlaubt es bei Kenntnis der Distanzen von zwei
Punkten z und z zu einem gemeinsamen Punkt y Aussagen iiber die Distanz

zwischen x und z zu treffen.

14.144-2410.25 + 13 + 16.25 + 15.25 + 29.25
2[AV07] beweist, dass die Zielfunktion J des fiir das resultierende Clustering innerhalb von
O(log k) des optimalen Clusterings liegt.

18

3.2. Schranken

11 e :/;/p .

O [.417 o |

-1 @ ° ° s
13

-2 1025 @ @ @ 16.25 |
°

-3 15.25 29;25,

-5 -4 -3 -2 -1 0 1

Abbildung 3.1.: Der rot markierte Punkt ist bereits ausgewéhlt. Die Summe der

quadratischen Distanzen betragt 9@ Mit einer Wahrscheinlichkeit
von % ~ 57% wird ein Punkt im unteren Cluster ausgewéhlt,
mit einer Wahrscheinlichkeit von % ~ 13% ein Punkt im gleichen

Cluster und mit einer Wahrscheinlichkeit von 2%25 ~ 30% der

96
blau markierte Ausreifler.

-2

Abbildung 3.2.: Durch Auswahl aller initialen Clusterzentren im Cluster bei (0, 0)
nicht weiter auftrennbare Cluster.

19

Kapitel 3. Beschleunigung von k-means

In Verbindung mit der Annahme, dass Datenpunkte, insbesondere bei zu-
nehmender Anzahl an Iterationen, nicht neu zugeordnet werden ,
Abschnitt 5; , Abschnitt IV] ist dies oftmals ausreichend, um zu ermit-
teln, ob ein Punkt potentiell neu zugeordnet werden muss.

Dazu léasst sich die Annahme in zwei Teilannahmen zerlegen:

1. Die Clusterzentren bewegen sich nur wenig.

2. Die Distanz von einem Datenpunkt zu seinem zugeordneten (und somit
néchsten) Clusterzentrum ist deutlich kleiner als die Distanz zu dem

zweitnachsten Clusterzentrum.

Die erste Annahme wird mit zunehmender Anzahl an Iterationen ausge-
pragter, da sich die Clusterzentren dann bereits nahe an ihrer Zielposition
befinden [Kan+00, Abschnitt 3]. Wenn keine Verdanderung in einem Cluster

stattfindet, dann bewegt sich das Clusterzentrum gar nicht.

Definition 5 (Statische und aktive Cluster)
Ein statischer Cluster ist ein Cluster, dessen Menge von zugeordneten Punkten
(A(c)) sich in der aktuellen Iteration nicht gedandert hat. Dem gegeniiber steht

ein aktiver Cluster, dessen Menge von zugeordneten Punkten sich geandert hat.

In [KENOO] waren in spéteren Iterationen bis zu 80 % der Cluster statische
Cluster. Eine Verletzung der Annahme ergibt sich, wenn die Bewegung dazu
fithrt, dass weit entfernte Punkte einem Cluster neu zugeordnet werden, also
die zweite Teilannahme verletzt wird.

Die zweite Annahme verlangt klar separierte nattirliche Cluster, also dass die
intra-Cluster-Distanzen deutlich kleiner als die inter-Cluster-Distanzen sind. In
diesem Fall gibt es nur wenige Punkte nahe den Grenzen der Voronoi-Zellen,
die bei der Verschiebung der Clusterzentren ihre Zuordnung é&ndern kénnten.
Das Zutreffen dieser Annahme ist daher abhédngig von dem zu clusternden
Datensatz.

Falls die erste Teilannahme zutreffend ist, erlauben es die namensgebenden
Schranken, die Distanzen zwischen Datenpunkten und Clusterzentren mit einem
geringen Fehler zu approximieren. Die Details dieser Approximierung werden
in Abschnitt diskutiert.

Falls die zweite Teilannahme zutreffend ist, erlaubt es ein simpler Vergleich

zwischen den approximierten Schranken fiir einen Grofiteil der Punkte zu

20

3.2. Schranken

ermitteln, dass diese ihre Zuordnung nicht éndern. Dies fithrt zu unserem ersten

Pruningkriterium:

Pruningkriterium 1 (Vergleich von unterer und oberer Schranke)

Wenn eine untere Schranke fiir die Distanz zwischen Datenpunkt und Cluster-
zentrum (A) eine obere Schranke fiir die Distanz zwischen Datenpunkt und
einem anderen Clusterzentrum (B) tberschreitet, dann muss Clusterzentrum
A weiter vom Datenpunkt entfernt sein als Clusterzentrum B. Insbesonde-
re kann Clusterzentrum A nicht das dem Datenpunkt am ndchsten gelegene

Clusterzentrum sein.

Im Sinne der besseren Verstandlichkeit soll an dieser Stelle noch die inverse
Dreiecksungleichung ({3.4) zur Verwendung in spéteren Abschnitten definiert

werden.

Definition 6 (Inverse Dreiecksungleichung)

Die inverse Dreiecksungleichung folgt durch einfaches Umformen aus der Drei-
ecksungleichung (3.3)):

(3.4)

3.2.1. Aktualisierung der Schranken

Bevor die einzelnen Schranken vorgestellt werden, soll zunéchst diskutiert
werden, auf welche Weise die tatsdachlichen Distanzen durch Schranken approxi-
miert werden und was fiir einen Einfluss die Art der Approximierung hat, da
dies fiir das Verstandnis der Unterschiede zwischen den und der Leistung der
unterschiedlichen unteren Schranken essentiell ist.

Neben Anzahl und Art unterscheidet sich insbesondere auch der Zeitpunkt
der Aktualisierung der Schranken je nach Algorithmus. Allen Algorithmen ist
aber gemein, dass es nach der Verschiebung der Clusterzentren in der zweiten
Phase notwendig ist, alle gespeicherten Schranken zu aktualisieren, damit die

Invarianten der Schranken giiltig bleiben. Eine scharfe obere Schranke wiirde

21

Kapitel 3. Beschleunigung von k-means

beispielsweise verletzt, wenn sich das Clusterzentrum von einem Datenpunkt

entfernt.

Rein mit Hilfe der Eigenschaften der Distanzfunktion, insbesondere der Drei-
ecksungleichung, kann keine Aussage tiiber die Bewegungsrichtung relativ zu
dem Datenpunkt beziehungsweise den Datenpunkten, auf die sich eine Schranke
bezieht, getroffen werden. Die Dreiecksungleichung garantiert lediglich, dass
die Distanz zum Datenpunkt sich nicht um mehr als die zuriickgelegte Distanz
gedndert haben kann. Dies folgt durch einfaches Einsetzen in die Dreiecksun-
gleichung beziehungsweise die inverse Dreiecksungleichung :

d(pa Cnew) S d(pa Cold) + d(coldy Cnew) (35)
d(pa Cnew) Z d(p, Cold) - d(cold7 Cnew) (36)

Aus diesem Grunde ist es bei der Aktualisierung typischerweise notwendig, die
zuriickgelegte Distanz ,,pessimistisch® auf die oberen Schranken zu addieren,
beziehungsweise von den unteren Schranken zu subtrahieren, um sicher zu

stellen, dass die Schrankeninvariante nicht verletzt wird.

In [RH] werden zusétzliche geometrische Eigenschaften genutzt, die eine
Aktualisierung erlauben, die préiziser als die pessimistische Aktualisierung ist.

Diese Eigenschaften sollen aber nicht Bestandteil dieser Arbeit sein.

Da die Schranken nach jeder Verschiebung der Clusterzentren um die zu-
rickgelegte Distanz aktualisiert werden, summiert sich der Fehler durch die
,pessimistische Annahme auf, wenn die Schranke zwischenzeitlich nicht durch
eine notwendige exakte Distanzberechnung scharf aktualisiert werden kann.
Diese Art der Aktualisierung wird daher als ,Sum of Norms®“, Summe der

Bewegungen, bezeichnet.

Insbesondere dann, wenn ein Clusterzentrum sich auf einer elliptischen Bahn
um einen Punkt bewegt, fiihrt diese Art der Aktualisierung dazu, dass ein
grofler aufsummierter Fehler entsteht, obwohl sich das Zentrum seit der letzten
exakten Aktualisierung der Schranke nur wenig bewegt hat. Es wird also die
erste Annahme aus Abschnitt [3.2| verletzt. In wird daher eine alternative
Aktualisierung vorgeschlagen, die ebenfalls rein auf den Eigenschaften der
Dreiecksungleichung aufbaut. Diese wird in Abschnitt néaher vorgestellt.

22

3.2. Schranken

3.2.2. Obere Schranke

Als Vergleichswert in jedem der Pruningkriterien wird die Distanz zwischen
einem Datenpunkt und dem bislang zugeordneten Clusterzentrum benotigt.
Schliellich ist diese Distanz die Distanz, die es fiir eine Neuzuweisung zu
unterschreiten gilt.

Anstelle diese Distanz in jedem Zuweisungsschritt erneut zu berechnen,
bietet es sich an, diese durch eine obere Schranke zu approximieren. In jeder
Iteration, in der die obere Schranke ausreichend prézise ist, um ein Pruning zu
ermoglichen, kann so eine Distanzberechnung eingespart werden.

Fiir die Speicherung der oberen Schranke entsteht ein zusétzlicher linearer
Speicherbedarf in der Anzahl der Datenpunkte: ©(N). Fiir jeden Datenpunkt

muss eine Distan gespeichert werden.

3.2.3. Untere Schranke

Neben einer oberen Schranke fiir das néchstgelegene Clusterzentrum setzen alle
Algorithmen auf untere Schranken fiir die Distanzen zu den anderen Cluster-
zentren. Die untere Schranke ist der essentielle Aspekt bei der Beschleunigung.
Der Grofiteil der Rechenzeit des Lloyd-Algorithmus wird fiir die (redundante)
Berechnung der Distanzen zu den Clusterzentren aufgewendet. Um diese Berech-
nungen einzusparen, miissen entsprechend Informationen iiber diese Distanzen
effizient vorgehalten werden.

Im Gegensatz zu der oberen Schranke gibt es hier durch die grofiere Anzahl
an Clusterzentren drei grundséitzliche Alternativen der Ausgestaltung. Diese
benennen wir nach dem (priméren) Autor des Algorithmus, in denen die

jeweilige Alternative vorgestellt wurde.

Elkan k¢

Der von Charles Elkan in [Elk03] vorgestellte , Elkan-Algorithmus® speichert
pro Datenpunkt und Clusterzentrum eine untere Schranke der Distanz. Diese
untere Schranke bezieht sich ausschliellich auf das Paar und ist diesem fest
zugeordnet.

Auf diese Weise erlaubt die Schranke mit Hilfe von Pruningkriterium [1| eine

feingranulare Entscheidung, ob ein spezifisches Clusterzentrum ein potentiell

3Beispielsweise eine 64-bit double precision IEEE 754-Gleitkommazahl.

23

Kapitel 3. Beschleunigung von k-means

2,5

0,5

0 0,5 1 1,5 2 2,5

Abbildung 3.3.: (Scharfe) untere Schranken des Elkan. Die Clusterzentren miissen
weiter als der Kreisradius von den Punkten entfernt sein. Die
Abstandsvektoren fiir den Punkt ¢ wurden im Sinne der Lesbarkeit
ausgelassen.

nachstgelegenes Clusterzentrum ist oder nicht. Dartiber hinaus kann die Schran-
ke immer dann scharf aktualisiert werden, wenn eine exakte Distanzberechnung
zwischen Datenpunkt und Clusterzentrum durchgefiithrt wird. Die Aktualisie-
rung nach der Verschiebung der Clusterzentren (Abschnitt verwendet
das Delta des zugeordneten Clusterzentrums.

Die unteren Schranken des Elkan benotigen einen zusétzlichen Speicher
in Hohe von O(N - k), es wird eine Distanz pro Paar aus Datenpunkt und

Clusterzentrum gespeichert.

Hamerly ,,1¢

Im von Greg Hamerly in vorgestellten ,,Hamerly-Algorithmus® wird
pro Datenpunkt genau eine untere Schranke gespeichert. Dies soll den gréfiten
Nachteil des Elkan, die hohe Anzahl der unteren Schranken und den damit
verbundenen hohen Speicherbedarf und hohen Aufwand bei der Korrektur der
Schranken verbessern.

Diese reprasentiert die Distanz zum zweitnéchsten Clusterzentrum. Mit Hilfe
von Pruningkriterium [1|konnen auf diese Weise mit einer Priiffung potentiell alle
Clusterzentren ausgeschlossen und somit alle Distanzberechnungen eingespart
werden. Wenn dies nicht moglich ist, ist es, sofern kein anderes Pruningkriterium

greift, hingegen notwendig, dass fiir alle Clusterzentren eine exakte Distanz

24

3.2. Schranken

2,5

0,5

0 0,5 1 1,5 2 2,5

Abbildung 3.4.: (Scharfe) untere Schranke des Hamerly. Die Clusterzentren miis-
sen weiter als der Kreisradius von den Punkten entfernt sein. ¢
beziehungsweise ¢4 sind das néchstgelegene Clusterzentrum fir p
beziehungsweise ¢ und haben daher einen geringeren Abstand als
die scharfe untere Schranke.

berechnet wird. Nach dieser exakten Berechnung werden sowohl die obere als
auch die untere Schranke scharf aktualisiert. Um die Korrektheit der Schranke
nach der Verschiebung der Clusterzentren zu gewéahrleisten, wird diese um die
Clusterbewegung mit dem gréfiten Betrag nach unten korrigiert. Eine grofe
Bewegung eines einzelnen Clusterzentrums (,,Big Mover“) hat dadurch einen

groflen Einfluss auf die Pruning-Moglichkeiten aller Clusterzentren.

Definition 7 (Big Mover)

Als ,,Big Mover® werden Clusterzentren bezeichnet, die im Vergleich zu den
durchschnittlichen inter-Cluster-Distanzen eine grofie Distanz zuriicklegen und
somit einen grofen Approximationsfehler bei der pessimistischen Aktualisierung

der Schranken verursachen.

Der Hamerly benétigt fiir seine untere Schranke einen Speicher von O(N)

zusatzlichen Distanzen.
Drake ,,1 < b < k¢

Die untere Schranke in Drakes Algorithmus, vorgestellt von Jonathan Drake
und Greg Hamerly in [Dral2], lasst sich als Kombination von Elkan- und von

25

Kapitel 3. Beschleunigung von k-means

Hamerly-Schranke auffassen’| Diese soll die Nachteile beider Algorithmen, den
hohen Overhead des Elkan und die Problematik der Big Mover des Hamerly,
vermeiden.

Der Drake verwendet b sortierte Schranken, die Anzahl wird tiber die Laufzeit
des Algorithmus variiert. Wie genau die Anzahl angepasst wird, wird im
Abschnitt zum konkreten Algorithmus ,,Drake® naher betrachtet.

Die ersten b — 1 dieser Schranken beziehen sich, wie die untere Schranke
des Elkan, auf jeweils ein konkretes Clusterzentrum, namlich auf die b — 1
néchstgelegenen Clusterzentren, beginnend mit dem zweitnéchsten. Die letzte
untere Schranke ist, wie die untere Schranke des Hamerly, eine gemeinsame
untere Schranke aller verbleibenden Clusterzentren.

Die Sortierung der Schranken reduziert den Aufwand beim Pruning. Ein
erfolgreiches Pruning mit Hilfe von Pruningkriterium 1} fithrt unmittelbar dazu,
dass auch alle verbleibenden Clusterzentren ausgeschlossen werden kénnen.
Einerseits kann dadurch die Priifung des Pruningkriteriums fiir eine Vielzahl von
Clusterzentren eingespart werden, wenn bereits eine der ersten Schranken ein
Pruning ermoglicht. Auf der anderen Seite ist es dadurch nicht notwendig, die
Clusterzentren der letzten (gemeinsamen) Schranke explizit zu speichern. Beim
Priifen des Pruningkriteriums kann beispielsweise eine Datenstruktur mit allen
nicht-ausschlieSbaren Clusterzentren gefillt werden. Wenn die letzte Schranke
ein Pruning erlaubt, dann ist keine weitere Berechnung notwendig. Wenn auch
die letzte Schranke kein Pruning erlaubt, dann sind alle Clusterzentren zu
priifen und die erzeugte Datenstruktur kann mit der Liste aller Clusterzentren
ersetzt werden.

Fiir alle Clusterzentren, die nicht ausgeschlossen werden kénnen, wird eine
exakte Distanzberechnung durchgefiithrt und die zugehorigen Schranken werden
scharf aktualisiert und neu sortiert.

Bei der Aktualisierung der Schranken nach der Bewegung der Clusterzentren
ist es moglich, dass ein weiter entferntes Clusterzentrum eine groflere Bewegung
als ein naher gelegenes Clusterzentrum durchfithrt. Durch die pessimistische
Aktualisierung wiirde dadurch potentiell die Ordnung der Schranken verletzt.
Eine echte Sortierung der Schranken fithrt aufgrund der zusammengefassten
letzten Schranke potentiell zu Problemen. Es konnte passieren, dass diese

Schranke nach der Sortierung nicht mehr die letzte Schranke ist. Dies macht

4Beziehungsweise kénnen umgekehrt Elkan- und Hamerly-Schranke als Spezialfall der
Drake-Schranke aufgefasst werden.

26

3.3. Weitere Pruningkriterien

O 05 1 15 2 25

Abbildung 3.5.: (Scharfe) untere Schranke des Drake fiir b = 3. Die letzte Schranke
bezieht sich jeweils auf alle verbleibenden Clusterzentren. Im Falle
von Datenpunkt p sind dies cg, c3 und c4. Fiir das nichstgelegene
Clusterzentrum wird keine untere Schranke gespeichert.

den Vorteil der Sortierung, das effiziente Pruning, zu nichte. Die Bewegungen der
Clusterzentren der ersten b — 1 Schranken miissten also mit den Bewegungen
der Clusterzentren der letzten Schranke verglichen und die Clusterzentren

moglicherweise ausgetauscht werden. Der Pflegeaufwand wére deutlich erhoht.

Um dieses Problem zu umgehen, werden die Schranken bei der Aktualisie-
rung nicht sortiert, sondern auf ihre Nachfolgeschranke beschrinkt. Eine weitere
Verringerung von unteren Schranken verletzt keine Invarianten, sondern macht
diese lediglich weniger scharf. Da die in der letzten Schranke zusammengefass-
ten Clusterzentren eine mutmaflich grofie Distanz zu dem jeweiligen Punkt
besitzen, besteht auch im Falle von Big Movern unter diesen ein ausreichender
Sicherheitsabstand zu der oberen Schranke, wodurch das Pruningkriterium

im Vergleich zum Hamerly haufiger wirksam bleibt.

3.3. Weitere Pruningkriterien

Zusatzlich zum Vergleich von oberer und unterer Schranke verwenden die
Algorithmen weitere Informationen, die es bei bekannter oberer Schranke
erlauben, Clusterzentren zu prunen. Im Gegensatz zur unteren Schranke ist der

Pflegeaufwand fiir diese zusétzlichen Pruningkriterien nicht von der Anzahl der

27

Kapitel 3. Beschleunigung von k-means

Datenpunkte abhéngig. Die zusatzlichen Metadaten sind schnell zu ermitteln,

im Gegenzug sind die entstehenden Pruningkriterien weniger stark.

3.3.1. Center-Center-Distanzen

Neben der unteren Schranke werden in die Distanzen zwischen den Clus-
terzentren als weiteres Pruningkriterium verwendet. Dazu werden zu Beginn
jeder Iteration die paarweisen Distanzen aller Clusterzentren berechnet. Fiir
jedes Clusterzentrum wird die Distanz zum néachstgelegenen Clusterzentrum ge-

speichert. Mit diesen Informationen ldsst sich Pruningkriterium |2 konstruieren.

Pruningkriterium 2 (Center-Center-Distanz)

Alle Clusterzentren ¢, deren halbe Distanz zu dem, einem Datenpunkt p néchst-
gelegenen, Clusterzentrum a, die obere Schranke u tiberschreitet, konnen aus-
geschlossen werden.

d(c, ap)

Vee C: 5 > u(p)

(3.7)
—> ¢ kann ausgeschlossen werden.

In der Praxis wird der Aufruf der Distanzfunktion einmalig zu Beginn der

[teration und nicht pro Datenpunkt durchgefiihrt.

Eine beispielhafte Veranschaulichung findet sich in Abbildung [3.6] c3 ist
das dem Punkt p in der letzten Iteration néchstgelegene und daher aktuell
zugeordnete Clusterzentrum. Aufgrund der Verschiebung der Clusterzentren ist
die obere Schranke u(p) nicht mehr scharf und daher grofler als die tatsiachliche
Distanz zwischen p und c3. Sie iiberschreitet die halbe Distanz zwischen c3 und ¢;
beziehungsweise ¢, und ,ragt® somit in die Voronoi-Zelle dieser Clusterzentren.
Daher konnen ¢; und ¢4 nicht gepruned werden. Die halbe Distanz zwischen
c3 und ¢y tiberschreitet die obere Schranke. Ein Pruning von ¢, ist daher
moglich. Eine genaue Distanzberechnung wiirde aber zeigen, dass c3 weiterhin

das néachstgelegene Clusterzentrum ist. Eine Neuzuweisung findet nicht statt.

Zu Beginn jeder Iteration miissen die paarweisen Distanzen aller Clusterzen-

E-(k—1
tren berechnen werden. Es werden %

ein ebenso grofler zuséitzlicher Speicherbedarf von © <w> benotigt.

zusatzliche Distanzberechnungen und

28

3.3. Weitere Pruningkriterien

2,5

0,5L ! ! ! ! 4
0 0,5 1 1,5 2 2,5

Abbildung 3.6.: Das Pruning mit Hilfe von Center-Center-Distanzen nutzt die
obere Schranke u(p) (rot) und die halbe Distanz zwischen dem
aktuell zugeordneten und allen anderen Clusterzentren (blau).

3.3.2. Distanz zu einem Fixpunkt (,,Norm*)

Der im Rahmen von Drakes Masterarbeit [Dral3, Abschnitt 3.2] entwickelte
und spéter in [HD17, Abschnitt 2.4.5] publizierte Annulus—Algorithmu fithrt

die Distanz zu einem Fixpunkt| als zusitzliches Pruningkriterium ein.

Pruningkriterium 3 (Distanz zu einem Fixpunkt)
Alle Clusterzentren ¢, deren Distanz zum Fixpunkt]] von der Distanz des
Datenpunktes p zum Fixpunkt um mehr als die obere Schranke u abweicht,

konnen ausgeschlossen Werdenﬁ:

vee Ol = pll| > u(p)
(3.8)
— ¢ kann ausgeschlossen werden.

Bei der Visualisierung (Abbildung dieses Pruningkriteriums entsteht
ein Ring (,Annulus®) mit der doppelten oberen Schranke als Durchmesser

um den Fixpunkt, sodass der Datenpunkt auf dem Kreis in der Mitte des

5In spiteren Veroffentlichungen auch als Annular-Algorithmus bezeichnet.

6Beispielsweise der Ursprung des Koordinatensystems, also die Norm des Punktes.

"Im Sinne der Lesbarkeit wird hier der Ursprung und somit die Norm gewéhlt.

8Da der Annulus eine Erweiterung des Hamerly ist, verwendet das Originalpaper das
Maximum aus v und [/, um eine Aktualisierung der unteren Schranke zu erméglichen.

Diese Anpassung wird in Abschnitt diskutiert.

29

Kapitel 3. Beschleunigung von k-means

1 05 0 05 1 15 2

Abbildung 3.7.: Die obere Schranke (rot) des Datenpunktes p spannt den blau
markierten Annulus auf.

Ringes liegt. Clusterzentren, die auflerhalb des Annulus liegen, in diesem Fall
c1 und ¢y, kénnen ausgeschlossen werden. Clusterzentrum c, liegt innerhalb des
Annulus und kann daher nicht ausgeschlossen werden, obwohl die Distanz zum
Datenpunkt p die obere Schranke iiberschreitet.

Zur Verwendung dieses Pruningkriteriums miissen einmalig die Distanzen aller
Datenpunkte zum Fixpunkt berechnet und gespeichert werden. Zu Beginn jeder
[teration miissen die k Distanzen der Clusterzentren zum Fixpunkt berechnet

werden. Insgesamt entsteht so ein zusitzlicher Speicherbedarf von O(n + k).

3.4. Sonstige Verbesserungen

Neben den Pruningkriterien, die den Algorithmus durch Vermeidung von Dis-
tanzberechnungen beschleunigen, moéchten wir auch einige weitere Vorschlage
zur Beschleunigung schrankenbasierter, exakter k-means-Algorithmen betrach-
ten. Diese haben unterschiedliche Ansatzpunkte. Teilweise haben sie zum Ziel,
die Aktualisierung der Schranken zu verbessern, teilweise ist das Ziel, den

Verwaltungsoverhead zu reduzieren und dadurch Rechenzeit einzusparen.

3.4.1. Norm of Sums

Wie in Abschnitt bereits festgestellt, fithrt die aufsummierte Aktualisierung

der Schranken nach jeder Iteration potentiell zu einem grofien Approximations-

30

3.4. Sonstige Verbesserungen

fehler. In Abschnitt 3.2] wird eine alternative Aktualisierung vorgestellt,
die anstatt der aufsummierten Bewegung aller Iterationen seit der letzten
scharfen Aktualisierung einer Schranke die tatsidchliche Abweichung von der
Position zu diesem Zeitpunkt verwendet.

Der praktische Unterschied zwischen der ,Sum of Norms* und dieser ,Norm
of Sums“-Aktualisierung ist in Abbildung dargestellt. Bei Sum of Norms
wird die obere Schranke zwischen Punkt p und dem Clusterzentrum immer
weiter pessimistisch erhéht. Bei Norm of Sums wird nur die tatséachliche Dis-
tanz zwischen der Position des Zentrums zum Zeitpunkt der letzten scharfen
Aktualisierung c;gn; und der aktuellen Position ¢, zur scharfen Schranke
addiert.

Um die Abweichung von der derzeitigen Position zu bestimmen, ist es not-
wendig, die historischen Positionen der Clusterzentren zu speichern und fiir jede
Schranke zu hinterlegen, in welcher Iteration diese zuletzt scharf aktualisiert
wurde.

Zu Beginn jeder Iteration wird fiir jedes Paar aus Clusterzentrum und gespei-
cherter Position die Distanz der Abweichung berechnet. Bei der Verwendung
einer Schranke wird diese um die Abweichung zur Position der Iteration der
letzten scharfen Aktualisierung modifiziert. Der Approximationsfehler ist dann
auf die pessimistische Aktualisierung beschrankt.

Um bei einer groffleren Anzahl an benétigten Iterationen zu verhindern,
dass der Speicherbedarf unbegrenzt wachst und um zu verhindern, dass die
Abweichung fiir historische Positionen, die nur noch von wenigen Schranken
referenziert werden, berechnet werden muss, werden die historischen Werte in
regelméfigen Abstanden geleert. Dabei wird fiir jede Schranke hinterlegt, dass
diese in der aktuellen Iteration zuletzt scharf aktualisiert wurde. Die gespeicherte
Distanz wird, wie bei ,Sum of Norms“, dauerhaft um die aktuelle Abweichung

angepasst. Anschlieffend konnen alle historischen Distanzen verworfen werden.

min

NF16| schlagt vor, dass dies alle t.eqr = % Iterationen geschieht.

3.4.2. Delta Updates

Fir die Berechnung des neuen Clusterzentrums (Abschnitt [2.1.2) ist es notwen-
dig, das arithmetische Mittel der Datenpunkte eines Clusters zu bestimmen.
Die naheliegende Losung ist es, diese Zuordnung explizit zu speichern, alle

Datenpunkte des zu aktualisierenden Clusters aufzusummieren und durch die

31

Kapitel 3. Beschleunigung von k-means

2,5

0,5}

Y

Abbildung 3.8.: Sum of Norms (rot) im Vergleich zu Norm of Sums (blau). Der
Wert der letzten scharfen Aktualisierung der Schranke ist schwarz
markiert.

Anzahl der Datenpunkte zu teilen. Diese Losung hat den Nachteil, dass ein, in
der Anzahl der Datenpunkte linearer, erhéhter Speicherbedarf entsteht. Auch
ist es hier nicht moglich, auf ein lineares Feld zur Speicherung zuriickzugreifen,

da es im Falle einer Neuzuordnung nicht effizient aktualisiert werden konnte.

Eine Alternative ist es, iiber alle Datenpunkte zu iterieren und alle Cluster
gleichzeitig aufzusummieren. Es wird zwar nur ein Speicher fir & Zwischener-
gebnisse bendtigt, aber auch fiir diese Losung ist es notwendig, tiber alle Punkte

zu iterieren, auch wenn nur wenige Neuzuweisungen stattgefunden haben.

Stattdessen schligt [Ham10, Abschnitt 3.2.2] vor, sich zu nutze zu machen,
dass das arithmetische Mittel algebraisch aggregiert werden kann. Fiir jeden
Cluster wird die aktuelle Vektorsumme der Datenpunkte und Anzahl der zuge-
ordneten Datenpunkte gespeichert. Bei einer Neuzuordnung eines Datenpunktes
wird die Summe und Anzahl des alten Clusters verringert, die Summe und
Anzahl des neuen Clusters erhoht. Die neue Position des Clusterzentrum kann
so durch eine einfache Division der Vektorsumme durch die Anzahl berechnet

werden.

Bei der Neuzuweisung eines Datenpunktes sind dadurch pro Punkt zwei Vek-
toradditionen notwendig, allerdings kénnen N Vektoradditionen bei der Aktua-
lisierung der Clusterzentren eingespart werden. Der zusitzliche Speicherbedarf

von einem d-dimensionalen Vektor und einer Ganzzahl pro Clusterzentrum ist

32

3.5. Eckdaten der Techniken

im Vergleich zu einer expliziten Speicherung der einem Cluster zugeordneten

Datenpunkte zu vernachlassigen.

3.4.3. Nebenlaufigkeit

Die Berechnungen innerhalb der beiden Phasen (Abschnitt des Lloyd-
Algorithmus und daher auch der betrachteten beschleunigten Algorithmen sind
nicht voneinander abhangig. Die Positionen der Datenpunkte sind iiber die
gesamte Laufzeit des Algorithmus unverdndert. Die Positionen der Clusterzen-
tren verdndern sich nur innerhalb der zweiten Phase (Abschnitt 2.1.2)). Die
vorgestellten Schranken beziehen sich immer auf einen konkreten Datenpunkt,
moglicherweise aber auf mehrere Clusterzentren.

Eine nebenlaufige Ermittlung des nichstgelegenen Clusterzentrums unter-
schiedlicher Datenpunkte ist so auch ohne den KEinsatz von Sperren sicher
moglich, sofern die verwendeten Datenstrukturen einen sicheren nebenléufi-
gen Zugriff auf unterschiedliche Elemente erlauben. Lediglich bei der Cluster-
Neuzuweisung ist es notwendig, auf Sperren oder atomare Schreiboperationen
zu setzen, damit eine nebenlédufige Zuweisung zum gleichen Cluster das korrekte
Ergebnis liefert. Da schon die Verwendung von Schranken auf dem Grundsatz
fult, dass eine Neuzuweisung nur selten stattfindet, ist zu erwarten, dass auf
die Erlangung dieser Sperren nicht gewartet werden muss.

Aus diesem Grund ist das k-means-Problem ,embarrassingly parallel“. Eine
Parallelisierung ist ohne nennenswerten zusétzlichen Rechenaufwand zur Si-
cherstellung der Korrektheit moglich, die Beschleunigung verhalt sich dauerhaft

nahezu linear zu der Anzahl der verwendeten Recheneinheiten.

3.5. Eckdaten der Techniken

Damit ergeben sich die in Tabelle dargestellten Eckdaten der vorgestell-
ten Techniken zur Beschleunigung in exakten, schrankenbasierten k-means-
Clustering-Algorithmen.

Distanzen in der Spalte zum Speicherbedarf beziehen sich auf zu speichernde
Rickgabewerte der Distanzfunktion. In der Regel werden diese in [IEEE 754]
standardisierte binary64—Gleitkommazahlenﬂ mit Bitlange 64 sein. Punkte sind

d-dimensionale Vektoren. Der Speicherbedarf bezieht sich rein auf die Nutzdaten,

9Ublicherweise als ,double precision“-Gleitkommazahlen bezeichnet.

33

Kapitel 3. Beschleunigung von k-means

ohne Beachtung des Overheads der eingesetzten Datenstruktur oder etwaiger

temporarer Variablen.

Der Pflegeaufwand bezieht sich auf den fixen, inhdrenten zusatzlichen Pflege-
aufwand pro Iteration. Der entstehende Aufwand zur Priifung eines Pruningkri-
teriums ist nicht berticksichtigt. Ebenfalls keine Berticksichtigung findet die
scharfe Aktualisierung von Schranken falls kein Pruning moglich ist und eine
exakte Distanzberechnung durchgefithrt werden muss. In diesem Fall muss nur
der ohnehin berechnete Wert innerhalb der Datenstruktur aktualisiert werden.
Die Anpassung der Distanzen als Pflegeaufwand bezieht sich auf die Aktua-
lisierung der Schranken (Abschnitt [3.2.1)). Eine Anpassung ist eine Addition
beziehungsweise Subtraktion von zwei Distanzen: Der aktuellen Schranke und

der Bewegung des Clusterzentrums.

Fir Delta Updates (Abschnitt |3.4.2) und Nebenlaufigkeit (Abschnitt |3.4.3)

lasst sich kein fixer Speicherbedarf und kein fixer Pflegeaufwand angeben.

Technik Maximaler Speicherbedarf Pflegeaufwand pro
Iteration

Obere Schranke N Distanzen Anpassung von N
Distanzen

Elkan-Schranke N - k Distanzen Anpassung von N - k
Distanzen

Hamerly-Schranke || N Distanzen Anpassung von N
Distanzen

Drake-Schranke N - k Distanzen Anpassung von N-m
Distanzen

Center-Center w Distanzen Berechnung von
@ Distanzen

Norm N + k Distanzen Berechnung von &
Distanzen

Sum Of Norms - Berechnung von &
Distanzen

Norm Of Sums k - tgear Punkte, N Ganzzahlen | Berechnung von im
Mittel k:td% Distan-
zen

Tabelle 3.1.: Eckdaten der Techniken zur Beschleunigung in exakten, schrankenba-
sierten k-means-Clustering-Algorithmen.

34

3.6. Einsatz in den Algorithmen
3.6. Einsatz in den Algorithmen

Die reine Ezistenz von Pruningkriterien erlaubt noch keine Beschleunigung des
Lloyd-Algorithmus. Nachfolgend soll daher untersucht werden, wie die zuvor
vorgestellten Pruningkriterien in unterschiedlichen Algorithmen zum Einsatz
kommen, wie die zusétzlich zu speichernden Informationen (etwa die Schran-
ken) im Detail gepflegt und aktualisiert werden und welche weiteren Prozesse
stattfinden miissen, damit der Algorithmus beschleunigt, aber insbesondere
auch exakt bleibt.

3.6.1. Elkan

Im Elkan [E1k03| werden, neben der Elkan-Schranke (Seite 23]) und einer oberen
Schranke, Center-Center-Distanzen zum Pruning verwendet. Die Definition
der Pruningkriterien kann im Elkan unmittelbar iibernommen und abgepriift
werden. Als weitergehende Berechnungen sind lediglich die Aktualisierung der
Schranken nach Verschiebung der Clusterzentren (Abschnitt und die

Berechnung der Center-Center-Distanzen notwendig.

Eine um die Priifung der Pruningkriterien erweiterte Version der Prozedur
,assignPointsToCluster” des Lloyd (Algorithmus fiir einen konkreten
Punkt p findet sich in Algorithmus [3.1. Die Variable nearest_dist konnte
entfallen. Sie wurde durch eine Abfrage der oberen Schranke des Punktes

ersetzt.

Zunéchst wird die minimale Center-Center-Distanz fiir das aktuell derzeit
zugeordnete Clusterzentrum mit Hilfe von Pruningkriterium [2 iiberpriift. Wenn
dieses relativ schwache Pruningkriterium ein Pruning erlaubt, dann koénnen
alle Clusterzentren ausgeschlossen werden. Die Bearbeitung des Datenpunktes

ist abgeschlossen.

Andernfalls werden fiir jedes Clusterzentrum die untere Schranke (Zeile
Pruningkriterium [I) und die exakte Center-Center-Distanz (Zeile [14} Pru-
ningkriterium [2)) iberpriift.

Wenn auch damit kein Pruning moglich ist, dann wird die obere (und untere)
Schranke, die durch die Aktualisierung der Position der Clusterzentren nicht
mehr scharf ist, mit einer Distanzberechnung scharf aktualisiert und die Priifung

wiederholt. Diese Distanzberechnung ist nur einmalig pro Punkt notwendig.

35

Kapitel 3. Beschleunigung von k-means

Algorithmus 3.1 assignPointsToCluster fiir einen konkreten Datenpunkt p
im Elkan
1: procedure ASSIGNPOINTSTOCLUSTERELKAN(D)

2: nearest < GETASSIGNEDCLUSTER(p)

3: loose <— True

4: if cc_ G(nearest) - 0.5 > U(p) then > Globales Center-Center
5: return

6: end if

7: for all c € C do

8: if ¢ = nearest then

9: continue with next c

10: end if

11: if L(p,c) > U(p) then > Untere Schranke
12: continue with next ¢

13: end if

14: if cc(nearest,c) - 0.5 > U(p) then > Center-Center
15: continue with next c

16: end if

17: if loose then

18: U(p) < D(p, nearest) > Obere Schranke scharf
19: L(p, nearest) < U(p) > Untere Schranke scharf
20: loose < False

21: if L(p,c) > u(p) then > Untere Schranke
22: continue with next ¢

23: end if

24: if cc(nearest,c) - 0.5 > u(p) then > Center-Center
25: continue with next c

26: end if

27: end if

28: L(p, c) < D(p,c) > Untere Schranke scharf
29: if L(p,c) < U(p) then > Priifung
30: nearest < ¢

31: U(p) < L(p,c)

32: end if

33: end for

34: ASSIGNPOINTTOCLUSTER (p, nearest)

35: end procedure

36

3.6. Einsatz in den Algorithmen

Da im Falle einer Neuzuweisung eine Distanzberechnung stattgefunden haben
muss, bleibt die obere Schranke bis zur Verschiebung der Clusterzentren scharf.

Wenn auch dann kein Pruning méglich ist, dann ist fiir das aktuelle Cluster-
zentrum eine exakte Distanzberechnung notwendig. Die untere Schranke kann
in diesem Zuge scharf aktualisiert werden.

Abschlielend erfolgt in Zeile analog zum Lloyd eine Priifung, ob das
aktuelle Clusterzentrum naher als das aktuell zugeordnete am Datenpunkt liegt.
In diesem Falle ist eine Neuzuweisung notwendig. Die obere Schranke wird
entsprechend angepasst.

Da den Schranken entweder unmittelbar (untere Schranke) oder mittelbar
(zugeordnetes Clusterzentrum fiir obere Schranke) ein konkretes Clusterzentrum
zugeordnet ist, konnen diese nach Verschiebung der Clusterzentren mit der
konkreten Bewegung eines Clusterzentrums aktualisiert werden.

Eine Variante des Elkan ohne den Einsatz von Pruningkriterium 2 wird auch
als ,,Simplified Elkan“ bezeichnet [NF16, Abschnitt 2.2].

3.6.2. Hamerly

Der Hamerly verwendet, genau wie der Elkan, obere und untere
Schranke, sowie Center-Center-Distanzen. Das Pruning beim Hamerly erfolgt
binar: Entweder kénnen alle Clusterzentren gepruned werden oder keines. Die
Hamerly-Schranke erlaubt kein préziseres Pruning, die Center-Center-Distanzen
wiirden es analog zum Elkan erlauben.

Die Struktur des Prunings im Hamerly ist sehr dhnlich dem Pruning im
Elkan. Der Unterschied besteht darin, dass das Pruning nicht innerhalb der
Schleife iiber alle Zentren stattfindet, sondern, wie die globalen Center-Center-
Distanzen des Elkans, unmittelbar vor der Schleife. Wie beim Elkan werden die
Pruningkriterien 1] (Zeile [3) und 2] (Zeile [6)) gegen die aktuelle obere Schranke
gepriift. Wenn kein Pruning moéglich ist, wird ganz analog die obere Schranke
scharf aktualisiert und die Pruningkriterien werden erneut geprift.

Wenn auch das kein Pruning erlaubt, dann miissen, analog zum Lloyd, die
Distanzen zu allen Clusterzentren ermittelt werden, um das nachstgelegene
Clusterzentrum zu bestimmen. Da alle Distanzen berechnet werden miissen,
wird in diesem Zuge die untere Schranke des Hamerly scharf aktualisiert. Sie

entspricht der Distanz zum zweitnachsten Clusterzentrum.

37

Kapitel 3. Beschleunigung von k-means

Algorithmus 3.2 assignPointsToCluster fiir einen konkreten Datenpunkt p
im Hamerly

1: procedure ASSIGNPOINTSTOCLUSTERHAMERLY (D)

2:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:

3
4
5:
6:
7
8
9

nearest <— GETASSIGNEDCLUSTER(p)

if L(p) > U(p) then
return
end if
if cc__G(nearest) - 0.5 > u(p) then
return
end if
U(p) < D(p, nearest)
if L(p) > u(p) then
return
end if
if cc__G(nearest) - 0.5 > u(p) then
return
end if
nearest <— L
U(p) = o0
L(p) < o0
for all c € C do
dist < D(p, c)
if dist < u(p) then
L(p) < U(p)
nearest <— c
U(p) « dist
else if dist < L(p) then
L(p) < dist
end if
end for

ASSIGNPOINTTOCLUSTER(p, nearest)

30: end procedure

> Untere Schranke

> Globales Center-Center

> Obere Schranke scharf
> Untere Schranke

> Globales Center-Center

38

3.6. Einsatz in den Algorithmen

Die Anpassung der oberen Schranke erfolgt wie beim Elkan. Da sich die untere
Schranke nicht auf ein konkretes Clusterzentrum, sondern auf alle Clusterzentren
aufler dem néchstgelegenen bezieht, muss die untere Schranke um die maximale
Bewegung innerhalb der Menge dieser Clusterzentren angepasst werden.

Analog zum ,Simplified Elkan“ gibt es einen ,Simplified Hamerly®, der
keine Center-Center-Distanzen nutzt. Die spéater in dieser Arbeit betrachteten
Algorithem ,, Annulus“ (Abschnitt und ,,Exponion“ (Abschnitt sind
unmittelbare Erweiterungen des Hamerly um leichtgewichtige Pruningkriterien

zur Vermeidung des binaren Prunings.

3.6.3. Drake

Beim Drake kommt ausschliefilich Pruningkriterium 1| auf Basis der
Drake-Schranke zum FEinsatz.

Als erstes priift der Drake mit der Schleife in Zeile [3, ab welcher unteren
Schranke ein Pruning mit Hilfe von Pruningkriterium (1| moglich ist. Wenn
die erste Schranke ein Pruning erlaubt (Zeile [9), dann ist das zweitnéchste
Clusterzentrum weiter entfernt als das nachste Clusterzentrum. Entsprechend
kann die Priifung an dieser Stelle abgebrochen werden. Wenn keine Schranke
ein Pruning erlaubt (Zeile , dann miissen alle Clusterzentren gepriift werden.
Diese sind Kandidaten das nachstgelegene Clusterzentrum zu sein. In allen
anderen Fallen sind das aktuell zugeordnete sowie alle Clusterzentren, die nicht
gepruned werden konnen, Kandidaten das nachstgelegene Clusterzentrum zu
sein.

Anschliefflend werden die Kandidaten nach ihrer Distanz zum Punkt p sortiert
(Zeile [19). Hierbei wird die exakte Distanz zwischen p und dem Kandidaten
benotigt. Diese Berechnung ist im Algorithmus nicht dargestellt, sie konnte
aber im Rahmen der Erstellung der Kandidatenliste erfolgen. In jedem Fall
muss die Distanz auch nach der Sortierung zur Verfiigung stehen, da sie in
den Zeilen [21] und [23| noch zur scharfen Aktualisierung der Schranken benotigt
wird.

Die sortierte Kandidatenliste enthélt nun die z nachstgelegenen Clusterzen-
tren. Das erste Clusterzentrum wird dem Punkt zugewiesen und zur scharfen
Aktualisierung der oberen Schranke genutzt. Alle anderen werden genutzt, um

die unteren Schranken scharf zu aktualisieren.

39

Kapitel 3. Beschleunigung von k-means

Algorithmus 3.3 assignPointsToCluster fiir einen konkreten Datenpunkt p
im Drake

1: procedure ASSIGNPOINTSTOCLUSTERDRAKE(p)

2:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:

21:
22:

23:
24:

z4+ 1
for i + 1..b do > Priiffung des Prunings
if [(p,i) > u(p) then
241
break loop
end if
end for
if z =1 then > Alle Clusterzentren konnen gepruned werden
return
else if 2 = | then > Kein Clusterzentrum kann gepruned werden
candidates < C'
else > Manche Clusterzentren konnen gepruned werden
candidates[1l] < GETASSIGNEDCLUSTER(p)
fori<1..(2—1) do
candidatesi 4+ 1] < l.(p, 1)
end for
end if
sort candidates by their distance to p
ASSIGNPOINTTOCLUSTER(p, candidates|1]) > Aktualisierung der

oberen Schranke

u(p) < D(p, candidates[1])
for ¢ < 2..LENGTH(candidates) do > Aktualisierung der unteren

Schranke

[(p,i — 1) < D(p, candidates]i))
end for

25: end procedure

40

3.6. Einsatz in den Algorithmen

Nach den Annahmen in Abschnitt ist zu erwarten, dass nach wenigen
Iterationen nur geringe Anderungen an der Clusterzuordnung notwendig sind
und Datenpunkte aufgrund des Verhéltnisses aus intra-Cluster- und inter-
Cluster-Distanzen nicht plotzlich einem bislang weit entfernten Clusterzentrum
zugeordnet werden. Entsprechend fithren primér die ersten unteren Schranken
zu einem Pruning. Die Pflege praziser Schranken zu weiter entfernten Clus-
terzentren ist daher nicht mehr notwendig und fiithrt zu einem vermeidbaren
Overhead. Aus diesem Grund wird in jeder Iteration ermittelt, wie viele Schran-
ken zum Pruning mazimal notwendig waren und die Anzahl der eingesetzten
Schranken wird nach unten auf diesen Wert angepasst. Die weiter entfernten
Clusterzentren werden damit in der letzten Hamerly-Schranke zusammengefasst.

Auf diese Weise variiert der Drake die Anzahl der Schranken von anfanglichen

k

1 auf potentiell nur % Schranken.

Die ersten b — 1 Schranken beziehen sich auf ein konkretes Clusterzentrum.
Entsprechend werden diese, wie beim Elkan, um die Bewegung dieses Cluster-
zentrums angepasst. Die letzte Schranke bezieht sich auf alle verbleibenden
Clusterzentren. Da diese nicht explizit gespeichert werden sollen und schon
bei der Zuordnung der Datenpunkte zur Verringerung der Anzahl der Schran-
ken angenommen wird, dass die letzte Schranke einen hohen Betrag hat, ist
auch der Einfluss von Big Movern auf die Pruningleistung begrenzt. Entspre-
chend ist es praktikabel, die letzte Schranke um die maximale Bewegung aller
Clusterzentren anzupassen, um Rechenaufwand zur Auswahl des passenden

Clusterzentrums einzusparen.

Wie schon in der Vorstellung der Drake-Schranke genannt (Seite [26)), fithrt
die Aktualisierung der Schranken potentiell zu einer Verletzung der aufsteigen-
den Ordnung. Eine echte Sortierung wiirde einen grofien Aufwand bedeuten,
entsprechend werden die Schranken auf ihren Nachfolger beschrankt. Sie sind
dadurch weniger scharf, aber nach den getroffenen Annahmen hat dies keine
Auswirkung auf die Pruningleistung. Wenn die Aktualisierung der Schranken
in umgekehrter Reihenfolge, beginnend mit Schranke b, stattfindet, dann kann
diese Beschrankung unmittelbar bei der Aktualisierung beriicksichtigt werden.
Als zusétzlicher Berechnungsaufwand wird lediglich ein zusétzlicher Vergleich
zur Priifung, ob die Schranke ihren Nachfolger iiberschreitet, benotigt. Im

Vergleich zu einer echten Sortierung ist dies zu vernachléssigen.

41

Kapitel 3. Beschleunigung von k-means

3.6.4. Annulus

Der Annulus-Algorithmus ist eine strikte Erweiterung des in Ab-
schnitt vorgestellten Hamerly und fithrt die Distanz zu einem Fixpunkt
(Pruningkriterium [3, Abschnitt als zusétzliches Pruningkriterium ein.

Dies erlaubt ein feingranulareres Pruning im Vergleich zum bindren Pruning
nur mit der unteren Schranke.

Um sicher zu stellen, dass die untere Schranke, die sich auf alle Clusterzentren
bezieht, auch beim Pruning einzelner Clusterzentren korrekt scharf aktuali-
siert werden kann, diirfen Clusterzentren, die potentiell die untere Schranke
unterschreiten, nicht gepruned werden. Entsprechend muss Pruningkriterium
so angepasst werden, dass nicht der Betrag der oberen Schranke, sondern das
Maximum aus oberer Schranke und der Distanz zum zweitndchsten bekannten
Clusterzentrum fiir den Durchmesser des Annulus verwendet wird.

Die obere Schranke fiir Distanz zum zweitndchsten Clusterzentrum muss
also bekannt sein. Diese wird im Gegensatz zur unteren Schranke im Hamerly
nicht explizit gespeichert. Aus diesem Grunde speichert der Annulus zusatzlich
die Identitat des zweitnachsten Clusterzentrums. Diese wird dazu genutzt, um
bei nicht moglichem Pruning mit Hilfe von Pruningkriterium (1| eine obere
Schranke fiir die Distanz zum zweitnachsten Clusterzentrum zu berechnen. Die
Berechnung dieser Distanz wére, da kein weiteres Pruning mehr moglich wére,
im Hamerly ohnehin erfolgt.

Die Zuordnung der Datenpunkte verlduft nahezu identisch zum Hamerly. Die
Anwendung der Pruningkriterien des Hamerly verlauft identisch. Nur dann,
wenn der Hamerly nicht prunen kann, kommt ab Zeile das zusatzliche
Pruningkriterium zum Einsatz. Wie oberhalb diskutiert, wird zunachst eine
obere Schranke fiir das zweitnéchste Clusterzentrum bestimmt. Diese wird als
LStartwert® fiir die neue, scharfe untere Schranke des Hamerly verwendet (Zei-
le und bei der exakten Berechnung der Distanzen zu nicht ausschlieSbaren
Clusterzentren analog zum Hamerly weiter verringert.

Nachdem die Grofie des Annulus mit Hilfe der Distanz zum néchsten und
zweitnédchsten Clusterzentrum festgelegt wurde, findet in Zeile |19 das eigentliche
Pruning mit Hilfe des zusatzlichen Pruningkriteriums |3| statt. Die Notation
mittels Pseudocode tibergeht im Sinne der Lesbarkeit einige Aspekte, die in
einer konkreten Implementierung berticksichtigt werden kénnen und sollten.

Diese sollen daher an dieser Stelle genannt werden.

42

3.6. Einsatz in den Algorithmen

Algorithmus 3.4 assignPointsToCluster fiir einen konkreten Datenpunkt p
im Annulus

1: procedure ASSIGNPOINTSTOCLUSTERANNULUS(p)

2:

10:
11:
12:
13:
14:
15:
16:
17:

18:
19:

20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:

3
4
5:
6:
7
8
9

nearest < GETASSIGNEDCLUSTER(p)
if L(p) > U(p) then
return
end if
if cc__a(nearest) - 0.5 > u(p) then
return
end if
U(p) < D(p, nearest)
if L(p) > U(p) then
return
end if
if cc__G(nearest) - 0.5 > u(p) then
return
end if > Bis zu dieser Stelle unverandert
nearest2 < GETNEAREST2(p)
L(p) < D(p, nearest2) > Obere Schranke der Distanz zum

zweitnachsten Clusterzentrum

annulus__size < MAX(U(p), L(p))
candidates < {c € C'| | ||lc|| = ||p|| | < annulus_size} > Zusitzliches

Pruning

for all ¢ € candidates do
dist < D(p, c)
if dist < u(p) then
nearest2 < nearest
L(p) < u(p)
nearest <— c
U(p) < dist
else if dist < L(p) then
nearest2 < c
L(p) « dist
end if
end for
ASSIGNPOINTTOCLUSTER(p, nearest)
ASSIGNNEAREST2(p, nearest2)

34: end procedure

43

Kapitel 3. Beschleunigung von k-means

Der erste Aspekt ist die redundante Berechnung der Normen innerhalb der
Gleichung. Die Position des Datenpunktes bleibt iiber die gesamte Laufzeit
des Algorithmus unverdndert. Entsprechend sollte ||p|| einmalig zu Beginn
des Algorithmus berechnet und anschliefend nur abgerufen werden. Analog
bleibt die Position der Clusterzentren innerhalb einer Iteration fiir alle Punkte
unverdndert, sodass auch diese nur einmalig pro Iteration berechnet werden

sollten.

Der zweite Aspekt ist die Verwendung einer bindren Suche zur effizienten
Ermittlung der nicht prunbaren Clusterzentren. Wenn die Clusterzentren nach
Berechnung der Normen aufsteigend nach ihrer Norm sortiert werden, dann kann
das erste Clusterzentrum, auf das die Bedingung | ||c|| — [p|| | < annulus_size
zutrifft, mit Hilfe einer bindren Suche bestimmt werden. Aufgrund der Stetigkeit
der Betragsfunktion und Monotie auf beiden Seiten der Nullstelle erfiillen alle
folgenden Clusterzentren die Bedingung, bis diese das erste mal verletzt wird.
Anschlielend erfiillt kein weiteres Clusterzentrum die Bedingung. Entsprechend
konnen nach der bindren Suche des ersten Clusterzentrums alle weiteren Cluster-
zentren linear gepriift und bei Verletzung der Bedingung die Suche abgebrochen

werden.

Im Vergleich zum Hamerly sind bei der Aktualisierung der Schranken keine
Anderungen notwendig. Die zusétzlichen Informationen werden entweder ein-
malig zu Beginn des Algorithmus (Distanz der Datenpunkte zum Fixpunkt)
ermittelt oder mussen in jeder Iteration scharf berechnet werden (Distanz der
Clusterzentren zum Fixpunkt), sodass diese Berechnung bei der Zuordnung der

Datenpunkte stattfinden kann.

Eine Variante des Annulus auf Basis des ,,Simplified Hamerly* bezeichnen

wir als ,,Simplified Annulus®.

3.6.5. Exponion

Genau wie der Annulus-Algorithmus ist auch der Exponion [NF'16] eine strikte
Erweiterung des Hamerly (Abschnitt [3.6.2)). Der Exponion kann als Weiter-
entwicklung des Annulus mit dem Ziel, das zusétzliche Pruningkriterium, den

namensgebenden Ring, effektiver zu machen, verstanden Werdenm.

0Tatséichlich ist der Exponion dem Hamerly aber néher als der Annulus.

44

3.6. Einsatz in den Algorithmen

Dazu verschiebt der Exponion den Mittelpunkt des RingesE] von einem
Fixpunkt zu dem jeweils aktuell zugeordneten Clusterzentrum. Diese Anderung
ist dadurch motiviert, dass das Volumen einer Hyperkugel in Dimension d vom

Radius r als d-te Potenz abhéngt [DLMF, S. 5.19.iii]. Durch die Verschiebung

des Mittelpunktes soll eine Reduzierung des Radius erzielt werden.

Das resultierende Pruningkriterium ist das bereits bekannte Pruningkri-
terium [2 die Center-Center-Distanzen. Diese kommen im Hamerly bereits
als globales Pruningkriterium zum Einsatz. Um die Center-Center-Distanzen
zusatzlich lokal, das heifit fiir ein spezifisches Clusterzentrum, einsetzen zu
konnen, ist eine kleine Modifikation erforderlich. Es muss zuséitzlich der mini-
male Abstand aller Clusterzentren zum aktuell zugeordneten Clusterzentrum
a, beriicksichtigt werden. Andernfalls wiirde potentiell das zweitnéchste Clus-
terzentrum ausgeschlossen (Abbildung [3.9D)). Dieses wird aber, wie bei der
Vorstellung des Annulus diskutiert, zur scharfen Aktualisierung der unteren

Schranke bendtigt.

Pruningkriterium 4 (Center-Center-Distanz (Exponion))

Alle Clusterzentren ¢, deren Distanz zu dem, einem Datenpunkt p nichstge-
legenen, Clusterzentrum a, die Summe aus der doppelten oberen Schranke
u und der minimalen Distanz zwischen a, und einem anderen Clusterzen-
trum iiberschreitet, konnen weder das nachstgelegene, noch das zweitnachste

Clusterzentrum sein und somit ausgeschlossen werden:

Vee C:d(c,ay) >2-u(p)+ min {d(d,a,)}
deC\{ap} (3_9)

—> ¢ kann ausgeschlossen werden.

In der Praxis wird der Aufruf der Distanzfunktionen einmalig zu Beginn der

[teration und nicht pro Datenpunkt durchgefiihrt.

Eine einfache Umformung der Bedingung von Pruningkriterium {4 zeigt die

Abstammung von der Center-Center-Distanz. Auf der rechten Seite kommt der

"Der beim Exponion ein regulirer Kreis, bezichungsweise eine regulire Hyperkugel ist.

45

Kapitel 3. Beschleunigung von k-means

2.5

2,
15)

1,

0,5 ‘ —
1 1,5 2 2,5 -2 0 2 4
(a) c2 und c3 befinden sich im griinen (b) Der Ring des Exponion ist scharf.
Kreis und konnen daher nicht aus- ¢o befindet sich infinitesimal ndher
geschlossen werden. ¢4 kann aus- an p als cs.

geschlossen werden.

Abbildung 3.9.: ¢; ist das dem Punkt p néchstgelegene Clusterzentrum. ¢y ist das
zweitnédchste Clusterzentrum und darf daher nicht ausgeschlossen
werden. Die reguldren Center-Center-Distanzen entsprechen dem
roten Kreis.

zweite Summand hinzu.

. d(c,ap) . d(c, ap)
Vee C: 5 > u(p) + Clerél\lglp} {—2

(3.10)
—> ¢ kann ausgeschlossen werden.

Die Bedingung ist scharf. Eine beispielhafte Situation findet sich in Abbil-
dung [3.9b] Die doppelte obere Schranke zum Datenpunkt fir sich genommen
entspricht Pruningkriterium [2 Der Ring des Exponions muss dementsprechend
mindestens so grofl sein, damit alle Clusterzentren, die potentiell ndher als das
aktuell zugeordnete Clusterzentrum c¢; am Datenpunkt p liegen, innerhalb des
Ringes liegen. Damit mindestens ein weiteres Clusterzentrum innerhalb des
Ringes liegt, muss die minimale Distanz zu einem anderen Clusterzentrum zu
der doppelten oberen Schranke addiert werden. Diese Distanz wird genau dann
erreicht, wenn das dem Zentrum c; néchstgelegene Clusterzentrum c3 auf der
Verlangerung der Strecke zwischen p und ¢; liegt. Eine Beriicksichtigung der
geometrischen Anordnung im Raum erlaubt die Dreiecksungleichung bekann-
termaflen nicht. Das tatsdchlich zweitndchste Clusterzentrum c, liegt genau
gegentiber von p und befindet sich infinitesimal naher an p als ¢3. Ein formaler
Beweis der Korrektheit findet sich in [NF16, SM-B.4.].

46

3.6. Einsatz in den Algorithmen

Die Identitdt des zweitnachsten Clusterzentrums ist im Gegensatz zum
Annulus fir den Exponion nicht von Belang. Im Vergleich zum Hamerly miissen
fir Pruningkriterium |4} zuséatzlich alle paarweisen Center-Center-Distanzen

bekannt sein, anstatt nur die betragsméaflig kleinste Distanz pro Zentrum.

In Algorithmus ist anhand der Kommentare direkt zu sehen, dass der
Exponion im Vergleich zum Hamerly anstatt iiber alle Clusterzentren C' zu
iterieren nur noch tber die, durch das zusatzliche Pruningkriterium 4| aus-
schliefbaren, Kandidaten candidates iterieren und nur fiir diese eine exakte
Distanzberechnung durchfithren muss. Weitere Anpassungen sind nicht notwen-

dig, alle notwendigen Informationen stehen bereits zur Verfiigung.

Wie auch beim Annulus unterschlagt die Notation in Pseudocode in Zeile
einige Details zur effizienten Implementierung. , Abschnitt 3.1] diskutiert
die Moglichkeit und die Schwierigkeiten einer binaren Suche zur Ermittlung der
Kandidaten. Diese gestaltet sich im Vergleich zum Annulus schwieriger, da die
Sortierung der Clusterzentren abhéngig vom aktuell zugeordneten Clusterzen-
trum ist. Die Clusterzentren miissen daher einmal pro Clusterzentrum sortiert
werden, entsprechend ergeben sich k Sortiervorgange. Dartiber hinaus kann
der [CPULCache weniger effizient arbeiten, da fiir jeden Datenpunkt ein nicht
vorhersagbares Clusterzentrum das aktuell zugeordnete ist. Entsprechend wird
fiir jeden Datenpunkt eine unterschiedliche Zeile in der Matrix der sortierten

Clusterzentren benétigt.

Als Losung wird in vorgeschlagen, dass keine vollsténdige Sortierung
der Clusterzentren durchgefiithrt wird, sondern die Clusterzentren so angeordnet
werden, dass alle Clusterzentren der ,,Gruppe® mit Indizes aus dem halboffenen
Intervall [27,2"%1) weiter entfernt als alle Clusterzentren mit Index kleiner
2" sind. Innerhalb einer Gruppe ist die Ordnung der Clusterzentren nicht
definiert. Jede Gruppe ist dabei doppelt so grofl wie die vorherige Gruppe
und enthélt ein Clusterzentrum mehr als alle vorherigen Gruppen zusammen.
Zusétzlich werden die Distanz-Grenzen zwischen den Gruppen gespeichert, diese
entsprechen jeweils dem grofiten Eintrag einer Gruppe. Die erste Gruppe, in
der alle Clusterzentren auflerhalb des Annulus liegen, kann bei dieser Ordnung
mit Hilfe einer bindren Suche gefunden werden, ohne dass eine vollstiandige

Sortierung erforderlich ist.

Fiir die beispielhafte Tabelle wiirde die Suche fiir einen Annulus der

GroBe 5 die bindre Suche mit einer Priifung der zweiten Gruppe ([2,4)) beginnen.

47

Kapitel 3. Beschleunigung von k-means

Algorithmus 3.5 assignPointsToCluster fiir einen konkreten Datenpunkt p
im Exponion
1: procedure ASSIGNPOINTSTOCLUSTEREXPONION(p)

2: nearest < GETASSIGNEDCLUSTER(p)

3 if L(p) > U(p) then

4 return

5: end if

6: if cc__G(nearest) - 0.5 > u(p) then

7 return

8 end if

9: U(p) < D(p, nearest)

10: if L(p) > u(p) then

11: return

12: end if

13: if cc__a(nearest) - 0.5 > u(p) then

14: return

15: end if

16: nearest < L

17: U(p) + oo

18: L(p) < o0 > Bis zu dieser Stelle unverandert

19: annulus__size < 2 - U(p) + CC__G(nearest)

20: candidates < {c € C'| cc(nearest, c) < annulus__size} >
Zusatzliches Pruning

21: for all c € candidates do

22: dist < D(p, c) > Ab dieser Stelle unveréndert

23: if dist < u(p) then

24: L(p) <~ U(p)

25: nearest <— c

26: U(p) « dist

27 else if dist < L(p) then

28: L(p) < dist

29: end if

30: end for

31: ASSIGNPOINTTOCLUSTER (p, nearest)

32: end procedure

Index || 1 [[2|3)4]5]6]| 7[8[9]10]11]12]13
Gruppe || [1,2) || [2,4) [4,8) 8,16)
Distanz | 1 [[6[4[|7[11][13]10]32|20]27]35]23]40

Tabelle 3.2.: Beispielhafte Sortierung der Clusterzentren fiir den Exponion. Die
Distanzgrenzen der Gruppen sind fett gedruckt.

48

3.6. Einsatz in den Algorithmen

Die maximale Distanz in dieser Gruppe betragt 6. Die bindre Suche fahrt in
der linken Hélfte fort, da diese Distanz grofler als der Annulus ist und alle
srechtsseitigen® Clusterzentren ausgeschlossen werden konnen. Entsprechend
wird als néchstes die erste Gruppe tiberpriift. Die maximale Distanz betragt 1.
Diese ist kleiner als der Annulus, es wird in der rechten Hélfte fortgefahren. Es
verbleiben keine weiteren Gruppen zur Priifung, die Grenze liegt in Gruppe
zwei. Die Clusterzentren mit Index zwischen 1 und 3 miissen iiberpriift werden.

Im schlechtesten Fal miissen aufgrund der gewédhlten Gruppengréfien im
Vergleich zu einem exakten Pruning fiir maximal doppelt so viele Clusterzentren
exakte Distanzberechnungen durchgefithrt werden.

geht allerdings nicht darauf ein, wie die Erzeugung der Gruppen in
der Praxis aussehen kénnte. Es wird lediglich die Suche bei gegebenen Gruppen
und die oberhalb vorgestellten Anforderungen an die Gruppen betrachtet.

Genau wie beim Annulus sind auch beim Exponion im Vergleich zum Hamerly
bei der Aktualisierung der Schranken keine Anderungen notwendig.

Im Gegensatz zum Annulus gibt es keine , Simplified Exponion“-Variante.
Die Berechnung der Center-Center-Distanzen ist essentiell fiir die Verwen-
dung des zusitzlichen Pruningkriteriums 4 Der Overhead bei der zusatzlichen

Verwendung als globales Pruningkriterium ist zu vernachléssigen.

3.6.6. Yinyang

Besonderes Merkmal des in [Din+15] vorgestellten Yinyang-Algorithmus ist,
dass dieser die Cluster zu Beginn in Gruppen aufteilt. Jede dieser Gruppen hat
eine gemeinsame untere Schranke, die sich wie eine Hamerly-Schranke (Seite
verhélt. Bei einer scharfen Aktualisierung entspricht sie der geringsten Distanz
eines Clusters der Gruppe, der nicht der dem Datenpunkt néchstgelegene
Cluster ist.

Die Aufteilung der Clusterzentren in Gruppen kann grundsatzlich beliebig
erfolgen. Es bietet sich aber an geometrisch benachbarte Cluster der selben
Gruppe zuzuweisen, da diese, unter der Annahme, dass sie sich bereits nah an
ihrer finalen Position befinden (Abschnitt [3.1)), eine &hnliche GréBenordnung
fir die Distanz zu den einzelnen Datenpunkten besitzen (Abbildung . Bei
der guten Aufteilung sind alle Cluster einer Gruppe benachbart und haben

daher dhnliche Distanzen zu den Datenpunkten. Die untere Schranke erlaubt

12Nur ein Clusterzentrum der letzten Gruppe liegt innerhalb des Annulus.

49

Kapitel 3. Beschleunigung von k-means

2 20 |
1 1 |
°
°e
O 0 | | |

(a) Gute Aufteilung in Gruppen. (b) Schlechte Aufteilung der Gruppen.

Abbildung 3.10.: Gegeniiberstellung einer guten und einer schlechten Aufteilung
der Gruppen.

ein effektives Pruning. Bei der schlechten Aufteilung sind die Cluster einer
Gruppe tiber den gesamten Raum verteilt. Die unteren Schranken haben fast
identische Werte, ein effektives Pruning ist nicht moglich.

[Din+15, Abschnitt 3, Step 1] schligt dazu vor, die initialen Clusterzentren
mit Hilfe von k-means fiir 5 Iterationen zu clustern. Die Anzahl der Cluster
wird als [45] gewihlt, jeder Cluster entspricht einer Gruppe.

Zunachst prift der Yinyang in Zeile 4| die globale untere Schranke, dem
Minimum der unteren Schranken aller Gruppen, gegen die obere Schranke.
Diese Priifung entspricht der Priifung der unteren Schranke im Hamerly (Algo-
rithmus Zeile [3). Nach der scharfen Aktualisierung der oberen Schranke
wird diese Priifung wiederholt, bevor der Yinyang die Kandidatengruppen
ermittelt (Zeile . Diese Gruppen sind die Gruppen, die nicht iiber die untere
Schranke ausgeschlossen werden kénnen.

Fiir jede Kandidatengruppen wird die untere Schranke auf den maximalen
Wert gesetzt, damit sie bei der Priifung der einzelnen Clusterzentren nach unten
auf die Distanz zwischen Punkt und dem néchstgelegenenﬁ Clusterzentrum
einer Gruppe korrigiert werden kann.

Es folgt die einzelne Priifung aller Clusterzentren. Zunéchst wird gepriift, ob
die Gruppe des Zentrums eine Kandidatengruppe ist (Zeile . Anschlielend
wird gepriift, ob das Clusterzentrum innerhalb seiner Gruppe das néchstgelegene
Clusterzentrum sein kann (Zeile . Dazu benotigt der Yinyang den Wert
der unteren Schranke vor der Aktualisierung der Schranken um die maximale

Bewegung innerhalb der Gruppe. Von dieser wird die Bewegung des konkret

13 Ausgenommen das dem Punkt zuzuweisende Clusterzentrum.

20

3.6. Einsatz in den Algorithmen

Algorithmus 3.6 assignPointsToCluster fiir einen konkreten Datenpunkt p
im Yinyang

1: procedure ASSIGNPOINTSTOCLUSTERYINYANG(p)

2: nearest < GETASSIGNEDCLUSTER(p)

3: global_lower < min{L(p,g) | g € G}

4: if global_lower > U(p) then > Globale Priifung der unteren Schranke

5: return

6: end if

7: U(p) < D(p, nearest)

8: if global _lower > U(p) then > Wiederholung mit scharfer oberer
Schranke

9: return

10: end if

11: candidates < {g | g € G,L(p,g) < u(p)} > Ermittlung der
nicht-prunebaren Gruppen

12: for all g € candidates do > Startwert fiir untere Schranke

13: L(p, g) < o0

14: end for

15: for all c € C' do

16: if ¢ = nearest then

17: continue with next ¢

18: end if

19: g < GETGROUP(c)

20: if g ¢ candidates then > Cluster-Pruning, wenn Gruppe gepruned

21: continue with next c

22: end if

23: if oLp_ L(p,g) — d0(c) > L(p,g) then > Pruning innerhalb der
Gruppe

24: continue with next c

25: end if

26: dist + D(p, c)

27 if dist < u(p) then

28: L(p, GETGROUP(nearest)) < U(p)

29: nearest < ¢

30: U(p) « dist

31: else if dist < L(p, g) then

32: L(p) < dist

33: end if

34: end for

35: ASSIGNPOINTTOCLUSTER (p, nearest)

36: end procedure

ol

Kapitel 3. Beschleunigung von k-means

betrachteten Clusterzentrums subtrahiert und somit eine untere Schranke fiir
das Clusterzentrum gebildet. Diese wird mit der kleinsten bekannten Distanz
der Gruppe zum Punkt verglichen und das Zentrum gepruned, wenn es nicht
das néchstgelegene Zentrum der Gruppe ist.

Wenn keine Priifung ein Pruning erlaubt, dann wird in Zeile 20| die exakte
Distanz fiir das Clusterzentrum berechnet und gepriift, ob das Clusterzentrum
entweder das dem Punkt nachstgelegene Zentrum oder das néchstgelegene
Zentrum der Gruppe ist.

Die Aktualisierung der Schranken lauft analog zum Hamerly ab. Die obere
Schranke wird um die Bewegung des zugeordneten Clusterzentrums korrigiert.
Die unteren Schranken werden um die maximale Bewegung aller Clusterzentren
einer Gruppe korrigiert.

Fiir das clusterspezifische Pruning innerhalb des Zuordnungsschritts ist zu-
satzlich der ,unkorrigierte® Wert der unteren Schranke und die Bewegungen der
einzelnen Clusterzentren von Interesse. Damit kein doppelter Speicherbedarf fiir
die untere Schranke anfillt, bietet es sich an, die Korrektur der Schranken in die
Neuzuordnung der Datenpunkte zu integrieren. Auf diese Weise miissen jeweils
nur die alten unteren Schranken eines einzelnen Datenpunktes vorgehalten

werden, eine Reduktion des Speicherbedarfs um den Faktor V.

52

Verwendete Testdatensatze

Zur Vergleichbarkeit mit bestehender Literatur und zur Sicherstellung einer
reprasentativen Auswahl soll die Implementierung gegen die in verwen-
deten Datenséatzen iiberpriift werden. Im Gegensatz zu wurde aber keine
Vorverarbeitung zur statistischen Standardisierung der Daten vorgenommen.

Es war nicht moglich, alle Datensétze eindeutig zu identifizieren und zu
beziehen. Mitunter war es gar nicht moglich, den Datensatz zu recherchieren,
etwa weil der Name zu unspezifisch war (beispielsweise ,mv“ oder ,tsn®). In
anderen Fallen konnten durch einen hinreichend eindeutigen Namen Datensétze
gefunden werden, mitunter bestanden hier aber Abweichungen in Dimension
oder Anzahl.

4.1. Beschreibung der Datensatze

Nachfolgend sollen die genutzten Datensétze kurz vorgestellt werden. Die
genauen Bezugsquellen, der in dieser Arbeit konkret genutzten Datensétze,
finden sich in Anhang[A]

birchl

Der birchl-Datensatz ist ein synthetisch generierter 2-dimensionaler Datensatz
bestehend aus 100000 Datenpunkten. Es finden sich 100 natiirliche Cluster
auf den Eckpunkten eines regelmafligen Gitters. Er wurde fiir den ,BIRCH"-
Clustering-Algorithmus konstruiert.

In wurde dieser Datensatz als , birch® bezeichnet. Neben dem gitter-
formigen Datensatz wurden in [ZRL97] auch sinusférmig verteilte und zuféllig

verteilte natiirliche Cluster untersucht. Dariiber hinaus ist unklar, ob der Da-

tensatz in [NF16| auf Basis der Eckdaten in |[ZRL97| generiert wurde oder

53

Kapitel 4. Verwendete Testdatensétze

Abbildung 4.1.: Der birchl-Datensatz.

ob ein bestehender Datensatz genutzt wurde. Eine sichere Identifizierung des

Datensatzes ist daher nicht moglich.

colormoments

Colormoments ist ein 9-dimensionaler Datensatz generiert aus 68 040 Bildern
der ,,Corel Image Collection®. Die Dimensionen entsprechen dem durchschnitt-

lichen Wert, der Standardabweichung und der statistischen Schiefe der drei

Komponenten des Farbraums [DG17].

Da dieser Datensatz auf realen Testdaten basiert, entspricht er mit an
Sicherheit grenzender Wahrscheinlichkeit dem Datensatz in [NF16].

conflongdemo

beschreibt den Datensatz als ,,Data contains recordings of five people
performing different activities. Each person wore four sensors (tags) while
performing the same scenario five times.". Die Bezugsquelle stellt eine
auf drei numerische Attribute reduzierte Version zur Verfligung. Laut der
Angaben dort enthélt der Datensatz 164 860 Datenpunkte in 11 natiirlichen
Clustern.

Da dieser Datensatz auf realen Testdaten basiert, entspricht er mit an
Sicherheit grenzender Wahrscheinlichkeit dem Datensatz in [NF16].

o4

4.1. Beschreibung der Datensatze

covtype

Covertype basiert auf Messdaten unterschiedlicher Wélder in den Vereinigten
Staaten von Amerika. Insgesamt besteht der Datensatz aus 581012 Daten-
punkten mit 54 Dimensionen. Die Einzelwerte enthalten unter anderem die
Erhebung in Metern, die Distanz zur nachsten oberflachlichen Wasserquelle, bi-
niare Werte fiir verschiedene Eigenschaften des Bodens und die namensgebende
Waldbedeckung (,,Cover Type*) als Ganzzahl zwischen 1 und 7 [DG17].

Da dieser Datensatz auf realen Testdaten basiert, entspricht er mit an
Sicherheit grenzender Wahrscheinlichkeit dem Datensatz in .

housel6h

Housel6h ist ein Datensatz, der zum Test von Algorithmen zur Klassifizierung
entwickelt wurde. Er besteht aus 22 784 Datenpunkten mit namensgebenden
16 Dimensionen von 1990 ermittelten Daten des US Census Bureau. Ziel der
Klassifizierung ist es, auf Basis dieser Daten, den Median-Preis eines Hauses
zu bestimmen. Zur Nutzung mit k-means ist der zu klassifizierende Preis als
17. Dimension Bestandteil des Datensatzes.

Da dieser Datensatz auf realen Testdaten basiert, entspricht er mit an

Sicherheit grenzender Wahrscheinlichkeit dem Datensatz in [NF16].

kddcup04

Kddcup04 ist der ,Protein Homology“-Trainingsdatensatz des Knowledge
Discovery and Data Mining Competition aus 2004. Er enthalt
145751 Datenpunkte mit jeweils 74 Dimensionen. Die Dimensionen beschrei-
ben unterschiedliche Eigenschaften von Proteinsequenzen [EIb]. Im Rahmen
des soll fiir diese Sequenzen klassifiziert werden, ob diese homolog]|
sind. Der Datensatz enthélt 303 Abstammungslinien, der die einzelnen Daten-
punkte zugeordnet sind. Nicht alle Datenpunkte entstammen aber tatséchlich
der zugeordneten Abstammungslinie, sondern sind negative Trainingsdaten.
Entsprechend sind im Datensatz mindestens 303 natiirliche Cluster zu finden.
gibt k& = 2000 als Anzahl der natiirlichen Cluster an.

Dieser Datensatz basiert auf realen Testdaten und entspricht daher wahr-
scheinlich dem Datensatz in . Der genutzte Datensatz in wird

'Homologe Proteine haben die gleiche Abstammung.

%)

Kapitel 4. Verwendete Testdatensétze

allerdings mit 145 750 Datenpunkten angegeben und ist somit um einen Daten-

punkt kleiner.

mnist784

L N0
N o
N N WO
L 6 W -
W Hh LO
~eaenNO
O 6N
NN L o—-
NLSN0O
N8 =9
®w®n WO
N &0 O
< W
L &2 O

k =16 (b) k = 16

N
-
I
)
=

C

(a

Abbildung 4.2.: Mogliche Clusterzentren im mnist784-Datensatz fiir unterschiedli-
che k und unterschiedliche Initialisierung.

~—

Der mnist784-Datensatz besteht aus 60 000 Graustufen-Bildern handgeschrie-
bener Ziffern. Die Bilder haben eine Hohe und Breite von jeweils 28 Pixeln,
entsprechend kann jedes Bild als Vektor, bestehend aus 784 ganzzahligen Wer-
ten aufgefasst werden. Fir jede Ziffer und Variante einer Ziffe findet sich ein
natiirlicher Cluster. Abbildung zeigt einige beispielhafte Clusterzentren. Ins-
besondere die 4 und die 9 sind schwierig auseinander zu halten. Die 0 hingegen
ist klar zu erkennen, besitzt aber viele mogliche Formen.

Da dieser Datensatz auf realen Testdaten basiert, entspricht er mit an
Sicherheit grenzender Wahrscheinlichkeit dem Datensatz in .

sl

Der s1-Datensatz ist ein synthetischer 2-dimensionaler Datensatz bestehend
aus 5000 Datenpunkten in 15 natiirlichen Clustern |[FV06|.

Dieser Datensatz wurde in nicht verwendet. In dieser Arbeit wurde
er zur effizienten Sicherstellung der Exaktheit der Implementierung genutzt, da
er aufgrund der geringen Grofe in jeder Algorithmenvariante schnell geclustert

werden kann.

2Die 1 wird beispielsweise im Englischen typischerweise als senkrechter Strich geschrieben,
wahrend sich im Deutschen der Haken am oberen Ende findet.

56

4.2. Eckdaten der Datensétze

Abbildung 4.3.: Der sl-Datensatz.

uscensus

Der uscensus-Datensatz basiert auf 1% bei der 21. Volkszahlung der Vereinig-
ten Staaten von Amerika erhobenen Daten. Insgesamt enthélt der Datensatz
2458 285 Datenpunkte bestehend aus 68 Dimensionen diskreter Einzelwerte.
Diese Einzelwerte sind, unter anderem, das Alter, der Familienstand, die Staats-
biirgerschaft, das Geschlecht, die Abstammung und das Einkommen [DG17].
Da dieser Datensatz auf realen Testdaten basiert, entspricht er mit an

Sicherheit grenzender Wahrscheinlichkeit dem Datensatz in [NF16].

4.2. Eckdaten der Datensatze

Tabelle gibt eine Ubersicht iiber die Eckdaten der genutzten Datensitze. N
ist die Anzahl der Datenpunkte, d die Anzahl der Dimensionen und k ist, sofern
bekannt, die Anzahl der natiirlichen Cluster. Der Typ gibt die Arten der Daten-
typen in den einzelnen Dimensionen an. Reelle und ganzzahlige Dimensionen
sind im Sinne reeller und ganzer Zahlen in der Mathematik zu interpretieren.
Distanzen und das arithmetische Mittel sind wohldefiniert. Bindre Dimensionen
enthalten einen von zwei moglichen Werten. Diese sind nicht notwendigerweise
0 und 1. Distanzen sind wohldefiniert, das arithmetische Mittel hingegen nicht.
Werte von kategorischen Komponenten enthalten einen Wert aus einer zuvor
definierten Menge von Zahlen. Die Werte in dieser Menge sind Stellvertreter
fiir die reprasentierte Figenschaft, wie etwa den Familienstand des uscensus-
Datensatzes. Entsprechend sind weder Distanzen noch das arithmetische Mittel

wohldefiniert.

57

Kapitel 4. Verwendete Testdatensétze

Bezeichner H N ‘ d k ‘ Typ
birch1 100000 2 100 | positiv ganzzahlig
colormoments 68 040 9 reell
conflongdemo 164 860 3 11 | reell
covtype 581012 | 54 ganzzahlig, binar, kategorisch
housel6h 22784 | 17 positiv ganzzahlig, positiv reell
kddcup04 145751 | 74 | > 303 | reell
mnist784 60000 | 784 | ~ 50 | positiv ganzzahlig
sl 5000 2 15 | positiv ganzzahlig
uscensus 2458285 | 68 positiv ganzzahlig, binar, kategorisch

o8

Tabelle 4.1.: Eckdaten der genutzten Datensétze.

Praktische Umsetzung

Zur empirischen Untersuchung und Beurteilung der Leistung der Algorith-
men in Kapitel [6] erfolgte eine praktische Implementierung der in Kapitel
beschriebenen Konzepte. Dieses Kapitel motiviert in Abschnitt die getrof-
fenen Designentscheidungen der praktischen Implementierung. Abschnitt
erklart, wie diese Designentscheidungen zur Implementierung der in Kapitel

vorgestellten Konzepten konkret berticksichtigt wurden.

5.1. Designentscheidungen

Grundsatzlich ist die Entwicklung nach dem Maflstab ,so simpel wie moglich,
so komplex wie notwendig® erfolgt.

Oberstes Ziel war es, dass die Vergleichbarkeit der Messdaten gewahrt bleibt.
Etwaige Anderungen und Optimierungen miissen daher in gleichem Mafle
Anwendung auf alle Algorithmen und Algorithmenkonfigurationen Anwendung
finden.

Unter dieser priméren Zielsetzung sollte eine effiziente Implementierung
geschaffen werden, um moglichst viele Messdaten innerhalb kurzer Zeit zu
erlangen. Auf der anderen Seite soll die Lesbarkeit und Versténdlichkeit nicht
gefdhrdet werden. Eine Optimierung, die alle Algorithmen beispielsweise um
5% beschleunigt und dafiir kryptische Anpassungenﬂ erfordert, wahrt zwar die
Vergleichbarkeit, fiihrt aber zu einer schlechteren Versténdlichkeit und erschwert
damit eine Nachvollziehbarkeit der Ergebnisse.

Um eine Vergleichbarkeit der Algorithmen zu gewahrleisten, wurde Wert
darauf gelegt, dass dhnliche oder identische Ablaufe in allen Algorithmen
identisch implementiert wurden. Die Berechnung der neuen Position eines
Clusterzentrums ist lediglich vom Einsatz der Delta Updates (Abschnitt

I Beispielsweise der Einsatz von Inline-Assembler.

99

Kapitel 5. Praktische Umsetzung

abhéngig und unterscheidet sich nicht pro Algorithmus. Dementsprechend
befindet sich diese in einer Funktion, die von jedem Algorithmus identisch
verwendet wird.

Die Struktur der Implementierung der Hauptschleife ist unmittelbar an dem
in Kapitel |3| vorgestellten Pseudocode orientiert. Bereits bei der Darstellung
der Algorithmen in Pseudocode wurde Wert auf moglichst geringe Anderungen
im Vergleich zum Lloyd-Algorithmus gelegt.

Die Implementierung der Algorithmen erfolgte in C++14 auf Basis der
Standard Template Library und ohne Verwendung externer Bibliotheken.
C++ liefert eine gute Leistung in Bezug auf Laufzeit und Speicherverbrauch
und ist daher eine naheliegende Wahl fiir Algorithmen, die grofie Datenmengen
verarbeiten sollen.

Wie eingangs genannt soll das resultierende Programm effizient sein, ohne
dass der Programmcode iibermafig komplex wird. So ist beispielsweise die Ver-
wendung der C++ Move Semantics oder die Verwendung von Referenzen
eine naheliegende Optimierung zur Vermeidung von Kopieroperationen. Diese
Techniken sollten jedem erfahrenen C+-+-Programmierer bekannt sein und
wurden daher wann immer moglich eingesetzt.

Die manuelle Verwendung von beispielsweise Streaming SIMD Extensions
(SSE) hingegen wiirde zwar alle Algorithmen gleichermafien beeinflussen, die
Verstiandlichkeit aber gefihrden. Entsprechend wurde darauf verzichtet?] das
resultierende Programm ist lediglich etwas langsamer.

Ganz analog liefert die alle notwendigen Datenstrukturen, die fiir die
Algorithmen notwendig sind und diese ist jedem erfahrenen C+--Entwickler
bekannt. Die Verwendung externer Bibliotheken, etwa einer Bibliothek zur
effizienteren Berechnung von Distanzen zwischen zwei Vektoren, erfordert es,
dass der Leser mit ebenjener Bibliothek vertraut ist. Entsprechend wurde auch
hier der Fokus auf die Verstandlichkeit und Kompatibilitat gesetzt.

Diese Entscheidung ist unter anderem durch die Referenzimplementierung
des Yinyang , yykmeans“ [Din+15] motiviert. yykmeans baut auf dem Graph-
Lab Framework auf. Zur Nachvollziehbarkeit und Reproduktion der
Ergebnisse sind Kenntnisse von GraphLab erforderlich.

Die Wahl des Algorithmus, die Wahl der Initialisierung und die Algorithmen-

konfiguration miissen zum Zeitpunkt der Kompilierung getroffen werden. Das

2Im Idealfall vektorisiert der Compiler die Schleifen selbststindig. Im Falle der Distanz-
funktion wurde dies durch Disassemblierung des resultierenden Programms verifiziert.

60

5.2. Konkrete Umsetzung der Designentscheidungen

endgiiltige ausfithrbare Programm (,,Binary®) enthélt nur den Maschinencode,
der zur Ausfiihrung der gewédhlten Konfiguration notwendig ist.

Dadurch, dass die Menge der Instruktionen in der Binary kleiner ist, passen
potentiell mehr Instruktionen in den [CPULCache. Die Chance auf Cache-Misses
wird reduziert. Weiterhin wird die Anzahl der Verzweigungen (,,Branches)
reduziert. Anstatt beispielsweise bei jeder Zuweisung priifen zu miissen, ob
Delta Updates (Abschnitt zum Einsatz kommen sollen, enthalt die Binary
entweder nur den Code fiir Delta Updates oder nur den Code fiir die explizite
Speicherung der Zuordnungen.

Die Erfassung von Messdaten, wie der Anzahl durchgefiithrter Distanzbe-
rechnungen, kann auf diese Weise ebenfalls vollstandig entfernt werden, wenn
Speicherverbrauch und Laufzeit extern gemessen werden. Letzteres kann bei-
spielsweise durch die Verwendung des Programms ,time® geschehen.

Die Entscheidung ist darin begriindet, dass eine derartige Flexibilitat zur
Ausfithrungszeit zwar fiir wissenschaftliche Untersuchungen hilfreich sein mag,

diese in einem realen Einsatz aber nicht notwendig ist und die Leistung senkt.

5.2. Konkrete Umsetzung der

Designentscheidungen

Wie in Abschnitt motiviert, ist die Umsetzung nahe an dem vorgestellten
Pseudocode orientiert, etwaige Schleifen und Bedingungen finden sich in gleicher
Form im C++-Quellcode wieder.

Identische Funktionsweise aller Algorithmen ist in eine gemeinsame abs-
trakte Basisklasse Algorithm ausgelagert worden von der alle Algorithmen
erben. Diese Basisklasse enthalt etwa die Methode zur Neuzuweisung eines
Datenpunktes zu einem Clusterzentrum, Methoden, die den aktuellen Zu-
stand zurtickliefern und eine Methode cluster (), die die von den abgeleiteten
Klassen zu implementierende Methode round () so lange aufruft, bis der Algo-
rithmus konvergiert. Sie nimmt ebenfalls die zu clusternden Datenpunkte und
die Positionen der initialen Clusterzentren entgegen. Letztere werden vorab
durch einen Initialization-Algorithmus ausgesucht, zur Verfiigung steht k-
means++ (Abschnitt und ein naiver Algorithmus, der die ersten k£ Punkte

des Datensatzes als initiale Clusterzentren wahlt.

61

Kapitel 5. Praktische Umsetzung

Die abgeleiteten Klassen implementieren round (), ergénzen bendtigte Klas-
senattribute zur Speicherung der verwendeten Schranken und anderer Metada-

ten und erweitern den Konstruktor um die algorithmenspezifische Initialisierung.

Die Wahl der eingesetzten Datenstrukturen ist, wann immer moglich, auf
std: :vector gefallen. Insbesondere dann, wenn die Datenstruktur nur einmalig
aufgebaut wird und anschliefend lediglich die Werte der einzelnen Elemente
verdndert werden miissen, bietet ein vector einen sehr schnellen Zugriff mit
geringem Speicheroverhead. Dies ist beispielsweise bei der Speicherung der
Schranken der Fall. Es muss einmalig eine Schranke pro Datenpunkt im vector
gespeichert werden, anschliefend wird dieses Element nur noch modifiziert.
Wann immer die Anzahl der zu speichernden Elemente bekannt war, wurde der
bendtigte Speicher im vector unmittelbar reserviert, damit beim Einfligen von
Elementen keine aufwandigen VergrofSerungen des Speicherbereichs notwendig

sind.

Falls die Verwendung eines vector nicht sinnvoll moglich war, etwa um
die Zugehorigkeit zu einer Menge dynamisch zu speichern, dann wurde ein

std: :unordered_set genutzt, um Elemente effizient entfernen zu kénnen.

Zur Speicherung mehrerer zusammengehoriger Werte, wie beispielsweise die
Identitat und die Distanz bei der Ermittlung des Clusterzentrums, das sich
am weitesten bewegt hat, wird zur Vermeidung von Fehlern auf eine Struktur
gesetzt. Die Zusammngehorigkeit der Werte ist auf diese Weise unmittelbar
ersichtlich. Indem zur Aktualisierung jeweils die komplette Struktur ersetzt
wird, ist es unwahrscheinlich, dass die Einzelwerte zueinander inkonsistent sind.
Im héufigsten Fall, der Speicherung von zwei Werten, ist ein std: :pair die
Struktur der Wahl.

Die Realisierung der Konfiguration bei Kompilierung erfolgt durch die Ver-
wendung von C++-Preprocessor-Direktiven. Nicht gewiinschte Funktionalitat

wird auf diese Weise vollstandig entfernt oder ersetzt.

Nebenldufigkeit kommt im Interesse der Verstandlichkeit des Quellcodes nicht
zum Einsatz. Wie in Abschnitt diskutiert, ist bei Verwendung von mehreren
Threads zu erwarten, dass alle Algorithmen gleichermaflen beschleunigt werden.
Der Einsatz von Nebenlaufigkeit erfordert aber ein groles Mafl an Sorgfaltigkeit
zur Vermeidung von subtilen Fehlern und dem effizienten Einsatz der trotz

guter Parallelisierbarkeit notwendigen Sperren.

62

5.2. Konkrete Umsetzung der Designentscheidungen

Verifikation

Zur Verifikation der Exaktheit kann konfiguriert werden, dass nach jeder Ite-
ration fiir jeden Cluster die Anzahl der zugeordneten Datenpunkte und ein
Hashwert dieser Datenpunkte ausgegeben werden soll. Diese Ausgabe kann an-
schliefend mit der Ausgabe des Lloyd-Algorithmus als Referenzwert verglichen
werden. Der Lloyd ist, geméfl Definition |3, der Mafistab fiir die Exaktheit eines

beschleunigten k-means-Algorithmus.

Die Ausgabe verwendet einen Hashwert, um zu vermeiden, dass bei grofie-
ren Datensétzen in jeder Iteration mehrere Megabyte Text ausgegeben und
potentiell in eine Datei geschrieben werden miissen. Die Gefahr von Kollisionen
ist zu vernachlassigen, da ein Fehler in der Regel dazu fithrt, dass zu viele
Clusterzentren ausgeschlossen werden und der Algorithmus daher zu frith kon-
vergiert. Im Falle von subtilen Abweichungen, etwa durch eine andere Sortierung
bei Clusterzentren mit gleicher Distanz, bietet die eingesetze Hashfunktion
eine hinreichende Kollisionssicherheit, insbesondere, da der Algorithmus mit

unterschiedlichen Datensatzen verifiziert wird.

Dariiber hinaus werden asserts zur Sicherstellung der Korrektheit und zur
erleichterten Fehlerdiagnose im Falle eines inkorrekten Resultats eingesetzt. So
wird beispielsweise gepriift, dass spéatere Pruningkriterien nicht alle Cluster-
zentren ausschliefen, wenn dies bereits durch ein fritheres Pruningkriterium
hétte erkannt werden miissen. Ein weiteres Beispiel ist die Binérsuche fiir die
Ermittlung der Clusterzentren im Annulus. Es wird durch ein assert sicherge-
stellt, dass das Clusterzentrum, das vor dem ersten ermittelten Clusterzentrum

in der sortierten Liste steht, nicht im Annulus liegt.

k-means+-+

Zur Vergleichbarkeit der Ergebnisse der unterschiedlichen Algorithmen wird
der k-means+-+-Initialisierung ein Zufallsgenerator (Random Number Engine)
iibergeben, der mit einem auf der Kommandozeile zu iibergebenen Seed initiali-
siert wird. Auf diese Weise kann sicher gestellt werden, dass alle Algorithmen
trotz der probabilistischen Natur von k-means++ die identischen initialen
Clusterzentren nutzen und somit gleich viele Neuzuweisungen und Iterationen

benotigen.

63

Kapitel 5. Praktische Umsetzung

Lloyd

Fiir den Lloyd-Algorithmus ist bei der Implementierung nichts zu beachten
gewesen. Die Implementierung besteht im wesentlichen aus zwei Schleifen, die
fiir jeden Punkt und jedes Clusterzentrum priifen, welches Zentrum dem Punkt

an nachsten gelegen ist.

Elkan

Der Elkan folgt dem Pseudocode sehr nahe. Wie eingangs erwahnt wird zur
Speicherung der oberen und unteren Schranken jeweils ein std: : vector genutzt.
Auch die ermittelten Center-Center-Distanzen werden fiir die [teration in einem
std: :vector gespeichert. Die zwei Parameterdimensionen werden auf die eine
Dimension des std: :vector mit Hilfe einer ,row-major“-Speicherung abgelegt.

Die ,,Simplified Elkan“-Variante ist dadurch realisiert, dass die Verwendung
der Center-Center-Distanzen mit Hilfe des C++-Preprocessors entfernt werden

kann.

Hamerly

Die Hinweise zum Elkan sind nahezu unverédndert auf den Hamerly anwendbar.
Ein Unterschied ist, dass die Center-Center-Distanzen nicht mehr paarweise
benotigt werden, sondern lediglich die geringste Distanz pro Zentrum. Entspre-

chend sind die Center-Center-Distanzen bereits eindimensional.

Drake

Im Vergleich zum Pseudocode enthalt die Implementierung des Drake, wie
in Abschnitt genannt, zusatzlich noch eine Speicherung der maximalen
Anzahl an benotigten Schranken (z) innerhalb einer Iteration. In der néchsten
[teration wird dieser Wert genutzt, um die Priifung der Pruningmdéglichkeit
frither abzubrechen.

Die Berechnung der exakten Distanzen erfolgt im Rahmen der Ermittlung
der ,Kandidaten® Die exakte Distanz wird zusammen mit dem Kandidaten in
einem std: :pair gespeichert und der std: :vector der Kandidaten anschlie-
B8end auf Basis dieser Distanz sortiert. AnschlieBend enthéalt der Vektor die

64

5.2. Konkrete Umsetzung der Designentscheidungen

z nachstgelegenen Clusterzentren in der Reihenfolge ihrer Distanz und kann
unmittelbar genutzt werden, um die unteren Schranken zu aktualisieren.

Die Aktualisierung der unteren Schranke erfolgt, wie in Abschnitt
vorgeschlagen, in umgekehrter Reihenfolge, um die aufsteigende Ordnung ohne

zusatzlichen Rechenaufwand sicherzustellen.

Annulus

Der Annulus ermittelt zu Beginn einmalig die Norm aller Datenpunkte. Die
Implementierung von round () erfolgt anschlieBend identisch zum Hamerly, mit
der Ergénzung des zusétzlichen Pruningkriteriums 3|

Neben der Moglichkeit zur Deaktivierung der bindren Suche erlaubt es die im
Rahmen dieser Arbeit erstellte Implementierung die Auswahl des Fixpunktes zu
konfigurieren. legt als Fixpunkt den Ursprung des Koordinatensystems
fest. Alternative Fixpunkte werden im Rahmen von [Dral3| nicht untersucht.
Die Position des Fixpunktes hat iiber die Distanz zu den Datenpunkten Einfluss
auf die Flidche des Annulus und daher auf die Pruningleistung. Um den Einfluss
der Position zu untersuchen, bietet die Implementierung die Moglichkeit den
Fixpunkt als Schwerpunkt (Mean) aller Datenpunkte zu wihlen. Eine weitere
Alternative ist die Wahl des Fixpunktes als das komponentenweise Minimum
aller Datenpunkte. Im zweidimensionalen Fall befindet sich der Fixpunkt somit

in der linken unteren Ecke des minimal umgebenden Rechtecks (Bounding
Box).

Exponion

Analog zum Annulus erweitert der Exponion ebenfalls den Hamerly. Im Un-
terschied zum Hamerly sind hier, wie beim Elkan, die paarweisen Center-
Center-Distanzen und nicht nur die geringste Distanz pro Zentrum notwendig.
Entsprechend verwendet der Exponion eine Implementierung analog zum Elkan.

Die in genannte binire Suche zur Ermittlung der Kandidaten ist
aus den in Abschnitt genannten Griinden nicht umgesetzt. Das ELKI
Framework enthélt eine Implementierung des Exponion in Java. Auch
diese ist beztiglich der bindren Suche unvollstindig. Die Referenzimplementie-
rung des ist diesbeziiglich ebenfalls nicht hilfreich, da sie eine geringe

Kommentardichte enthélt, genutzte Bezeichner hdufig Abkiirzungen enthal-

65

Kapitel 5. Praktische Umsetzung

ten und die Implementierung in komplexen Klassenhierarchien organisiert ist.
Entsprechend ist es schwierig, ein angemessenes Verstédndnis fiir die Implemen-
tierung zu entwickeln, um den im Paper genannten Vorschlag zur binaren Suche

nachvollziehen und insbesondere auch die Korrektheit priifen zu kénnen.

Yinyang

Der Yinyang weicht in der Implementierung am starksten von den anderen
Algorithmen ab. Eine Besonderheit ist hier, dass die Aktualisierung der Schran-
ken, wie in Abschnitt vorgeschlagen, wihrend jeder Iteration erfolgt und
nicht nach der Iteration. Dies ist darin begriindet, dass sowohl der Betrag der
Schranken vor der Aktualisierung, als auch der Betrag der Schranken nach
der Aktualisierung zum Pruning bendétigt wird. Indem die Aktualisierung Be-
standteil der jeweiligen Iteration ist, miissen lediglich die Werte eines einzelnen

Datenpunktes doppelt vorgehalten werden.

Das Clustering der initialen Clusterzentren zur Bestimmung der Gruppen-
zusammensetzung erfolgt mit Hilfe des Lloyd-Algorithmus. Die Initialisierung
des Lloyd-Algorithmus erfolgt auf naive Weise. Es werden die ersten (%1 Clus-
terzentren als initiale Clusterzentren gewahlt. Wenn der Yinyang selbst durch
k-means++ initialisiert wurde, dann ist auch mit dieser naive Initialisierung
eine gute Verteilung zu erwarten, da die zuerst gewdhlten Clusterzentren bei k-
means++ weit voneinander entfernt sind und somit nicht innerhalb der gleichen

Gruppe sein sollten.

Es erfolgten zwei Implementierungen von Yinyang, die wir als , yinyang®
und , yinyang2“ bezeichnen. Die erste Implementierung (, yinyang“) erfolgte
rein auf Basis der Beschreibung in [Din+15]. Diese Implementierung enthélt
eine fehlerhafte Aktualisierung der unteren Schranke, die durch eine Unklar-
heit in der textuellen Beschreibung entstanden ist. Anstatt das zweitnéchste
Clusterzentrum pro Gruppe separat scharf zu aktualisieren, wird das global
betrachtete zweitnéchste Clusterzentrum genutzt, um die untere Schranke der
nicht-prunebaren Gruppen zu aktualisieren. Die separate untere Schranke ist
dadurch lediglich im Falle eines erfolgreichen Prunings von Relevanz, in allen
anderen Fallen degeneriert der , yinyang" zu einem Hamerly mit deutlich mehr
Overhead. Entsprechend liefert der ,,yinyang® eine Leistung vergleichbar mit

dem Lloyd. In vielen Féllen sogar eine schlechtere Leistung.

66

5.2. Konkrete Umsetzung der Designentscheidungen

Der , yinyang2“ ist eine Implementierung unter Sichtung der Referenzimple-
mentierung. In diesem wird korrekt iiber das nachstgelegene Clusterzentrum
jeder Gruppe Buch gefiihrt und dieses zur Aktualisierung der unteren Schranke
genutzt. Entsprechend sind die Schranken im Vergleich zum , yinyang®“ deutlich
schérfer und es wird eine gute Leistung erzielt.

Der , yinyang® ist im Sinne der Vollsténdigkeit enthalten, enthélt aber einen
Hinweis auf das Missverstandnis von [Din-+15].

Aktualisierung der Schranken

Zur Aktualisierung der Schranken miissen die Bewegungen der Clusterzentren
bekannt sein. Dazu wird die aktuelle Position der Clusterzentren zu Beginn
jeder Iteration abgespeichert. Nach der Verschiebung in den Schwerpunkt kann
fiir jedes Clusterzentrum die Distanz zu seiner alten Position berechnet und
die Schranken entsprechend nach unten oder nach oben korrigiert werden.
Zur Realisierung von ,Norm Of Sums“ wird fiir jede Schranke neben der
Distanz zusatzlich ein Integer gespeichert. Dieser gibt die Iteration der letzten
exakten Aktualisierung an. Bei der Korrektur der Schranken wird die Position
des Clusterzentrums dann nicht mit der zuletzt bekannten Position verglichen,

sondern mit der Position zu der jeweiligen exakten Aktualisierung.

Delta Updates

Delta Updates sind wie in Abschnitt diskutiert umgesetzt. Statt pro
Clusterzentrum ein std: :unordered_set mit den zugeordneten Punkten zu
speichern, wird ein std: :pair bestehend aus der Vektorsumme aller zugeord-
neten Datenpunkte und der Anzahl der zugeordneten Datenpunkte gespeichert.
Zur Aktualisierung der Position des Clusterzentrums wird die Vektorsumme

durch die Anzahl geteilt, um das arithmetische Mittel zu erhalten.

67

Empirische Untersuchung

Dieses abschliefende Kapitel untersucht die Leistung der Algorithmen im prakti-
schen Einsatz unter Verwendung der in Kapitel |5 entwickelten Implementierung
und der in Kapitel |4] vorgestellten Datensdtze. Um eine Reproduktion und
Uberpriifung der Ergebnisse zu erméglichen, beginnen wir mit einer umfassen-
den Erklarung der Methodik und Testumgebung in Abschnitt [6.1} Nach einer
Vorstellung der verwendeten Beurteilungskriterien in Abschnitt folgt in
Abschnitt die eigentliche Auswertung der gewonnenen Messdaten.

6.1. Methodik

Durch die Implementierung von sieben Algorithme mit sieben Featureflags, die
sich teilweise gegenseitig ausschliefen und nicht immer auf jeden Algorithmus
anwendbar sind, und zwei moglichen Initialisierungen?| ergeben sich insgesamt
156 Varianten von durch Schranken beschleunigten k—means—Algorithme.
Listing zeigt die genaue Zusammenstellung der Algorithmen mit ihren
jeweiligen Featureflags als Auszug des Python-Skripts zur Generierung des
Makefiles.

Fiir den praktischen Test sind lediglich die Varianten mit k-means++ als
Initialisierungsmethode zum Einsatz gekommen. Die naive Initialisierung ist
nicht reprasentativ fiir einen realen Einsatz und findet lediglich im Yinyang zur
Initialisierung der Gruppen Anwendung. Ebenfalls nicht genutzt wurden die
Varianten ohne den Einsatz von Delta Updates. Letztere waren in Vorabtests
konsequent und deutlich schneller als die explizite Speicherung der Zuordnung

von Cluster zu Datenpunkt. Eine detaillierte Untersuchung wiirde keine tiber-

! Acht unter Beriicksichtigung des fehlerhaften ,yinyang*
2Naiv und k-means++
3156 inkludiert die vier nicht-beschleunigten Lloyd-Varianten

69

Kapitel 6. Empirische Untersuchung

class Flags (Enum):

NsBound = ("USE_NS_BOUND", "ns")

RollingSum = ("USE_ROLLING_SUM", "rolling")

SimplifiedElkan = ("SIMPLIFIED_ELKAN", "simplified")
SimplifiedHamerly = ("SIMPLIFIED_HAMERLY", "simplified")
AnnulusNoBinarySearch = ("ANNULUS_NO_BSEARCH", "noBsearch")
AnnulusOriginMean = ("ANNULUS_ORIGIN_MEAN", "originMean")
AnnulusOriginEdge = ("ANNULUS_ORIGIN_EDGE", "originEdge")

class Algorithms (Enum):
Annulus = Algorithm(
"ANNULUS",

Flags.NsBound,

Flags.RollingSum,

Flags.SimplifiedHamerly,

Flags.AnnulusNoBinarySearch,

[Flags.AnnulusOriginMean, Flags.AnnulusOriginEdge 1,

)

Drake = Algorithm("DRAKE", [Flags.NsBound, Flags.RollingSum])

Elkan = Algorithm("ELKAN", [Flags.NsBound, Flags.RollingSum, Flags.
SimplifiedElkan])

Exponion = Algorithm("EXPONION", [Flags.NsBound, Flags.RollingSum])

Hamerly = Algorithm(

"HAMERLY", [Flags.NsBound, Flags.RollingSum, Flags.SimplifiedHamerly]

)

Lloyd = Algorithm("LLOYD", [Flags.RollingSum])

YinYang = Algorithm("YINYANG", [Flags.RollingSum])

YinYang2 = Algorithm("YINYANG2", [Flags.NsBound, Flags.RollingSum])

class Initialization(Enum):

Naive = "NAIVE"
KmeansPP = "KMEANSPP"

Listing 6.1: Die moglichen Varianten ergeben sich als kartesisches Produkt aus
Initialisierung, Algorithmus und den Featureflags des jeweiligen
Algorithmus.

raschenden Ergebnisse zu Tage fithren und wére eine Verschwendung in Form
von Rechenleistung und Strom.
Insgesamt verbleiben 39 Varianten von denen mit 24 der Grofiteil aufgrund
der groflen Anzahl an unterstiitzten Featureflags auf den Annulus entfallt.
Diese wurden unter Deaktivierung der asserts (-DNDEBUG=1) und mit akti-
vierter Erhebung von Statistiken (-DENABLE_STATS=1) mit clang++ 3.8 kom-
piliert. Der vollstindige Compiler-Aufruf findet sich in Listing [6.2]

clang++ -Isrc -std=c++14 -02 -Wall -pedantic -DENABLE_STATS=1 -DNDEBUG=1

Listing 6.2: Verwendete Kompilierungsparameter

Zur Erhebung des maximalen Hauptspeicherverbrauchs wurde die Erhebung
der Statistiken deaktiviert, das ~-DENABLE_STATS=1 entfallt.

70

© 00~ O Uk W~

[e i e R e e
O © 00O Uik WwN—=O

21
22
23
24
25
26

6.1. Methodik

Die Tests erfolgten unter Verwendung eines [KVMlvirtualisierten Cloud-
servers mit 4 dedizierten [CPUlKernen, 16 GiB Hauptspeicher und NVM Ex-
press (NVMe)-Festspeicher. Die [CPUIKerne werden innerhalb des Cloudservers
als Intel Xeon der Skylake-Architektur mit 2100 MHz Taktfrequenz angegeben
(Listing , die im physischen Wirt tatsachlich verwendete ist nicht
bekannt.

processor : 0

vendor_id : Genuinelntel

cpu family 6

model : 85

model name : Intel Xeon Processor (Skylake, IBRS)
stepping : 4

microcode ¢ Ox1

cpu MHz : 2100.000

cache size : 16384 KB

physical id : 0

siblings H

core id 0

cpu cores 2

apicid : 0

initial apicid : O

fpu : yes

fpu_exception : yes

cpuid level : 13

wp : yes

flags fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov

pat pse36 clflush mmx fxsr sse sse2 ht syscall nx pdpelgb rdtscp 1m
constant_tsc rep_good nopl xtopology pni pclmulqdq ssse3 fma cx16 pcid sse4_1
sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx fl16c rdrand
hypervisor lahf_1lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb kaiser
fsgsbase bmil hle avx2 smep bmi2 erms invpcid rtm mpx avxb512f avxb512dq rdseed
adx smap clwb avx512cd avxb512bw avx512vl xsaveopt xsavec xgetbvl arat md_clear

bugs : cpu_meltdown spectre_vl spectre_v2 spec_store_bypass 11tf mds
bogomips : 4200.00

clflush size : 64

cache_alignment : 64

address sizes : 40 bits physical, 48 bits virtual

power management:

Listing 6.3: Ausgabe von /proc/cpuinfo fiir einen CPU-Kern des virtualisierten
Testsystems.

Das eingesetzte Betriebssystem war ein minimales Debian [GNUJ/Linux 9.9
(,Stretch®) mit Linux 4.9. Neben grundlegenden Systemdiensten und dem
OpenSSH-Dienst lief zu jedem Zeitpunkt lediglich eine der 39 Binarys zum
k-means-Clustering. Entsprechend stand die komplette Leistung des Systems
dieser Binary zur Verfligung, eine Verfialschung des Messergebnisses durch
etwaige Kontextwechsel oder von anderen Prozessen angeforderte Rechenzeit
wird dadurch minimiert. Von den 4 dedizierten [CPUKernen wurde aufgrund
der nicht implementierten Nebenlaufigkeit nur einer genutzt. Die Wahl eines

Modells mit weniger Kernen war nicht méglich, da einige Algorithmen

71

Kapitel 6. Empirische Untersuchung

zum Clustern der grofleren Datensitze mehr als die 8 GiB Hauptspeicher des
nachstkleineren Modells benotigten.

Die wahrend des Clusterings erfassten Messdaten werden durch die Binary
im Lines-Format tiber die Standardausgabe (std: :cout) ausge-
geben. Diese Ausgabe wurde zur Weiterverarbeitung in eine Datei umgeleitet.
Aufgrund der geringen Datenmengen und des schnellen Festspeichers ist keine
Beeinflussing des Messergebnisses zu erwarten gewesen.

Bedingt durch die Leistungsfidhigkeit der Hardware, den verfiigharen Haupt-
speicher und die zur Verfiigung stehende Zeit wurde die Anzahl von Clustern in
Schritten von 16 zwischen 16 und 96 gewéhlt. Eine maximale Anzahl von Clus-
tern iiber 96 hétte mehr Arbeitsspeicher erfordertﬂ Eine kleinere Schrittgrofe
hétte die benotigte Laufzeit ohne zu erwartenden Kenntnisgewinn vervielfacht.

Auf gleiche Weise wurden pro Datensatz und Clusteranzahl nur jeweils finf
unterschiedliche Initialisierungen mit k-means++ getestet. Diese Anzahl erlaubt
eine Mittelung der resultierenden Werte mit einem angemessenen Zeitaufwand.

Ein vollstandiges Clustering aller Datensétze fiir alle Clusteranzahlen, Initia-
lisierungen und Algorithmenvarianten benétigte mit diesen Beschrinkungen

etwa zehn Tage.

6.2. Beurteilungskriterien

Primares Kriterium zur Beurteilung der Leistung der einzelnen Varianten ist
die Realzeit (,Wall Clock Time*) und dadurch implizit auch die [CPULZeit. Die
Realzeit ist der nach auflen sichtbare Effekt der Beschleunigung von k-means.
Eine reduzierte Realzeit bedeutet, dass Ergebnisse schneller zur Verfiigung
stehen und dass Hardware eingespart werden kann.

Sekundéres Kriterium ist die Anzahl der Distanzberechnungen. Die Anzahl
der Distanzberechnungen ist der Bestandteil von k-means, der sich algorith-
misch verbessern lasst. Der Lloyd verbringt den Grofiteil der Rechenzeit mit der
Berechnung von Distanzen. Die benétigte Rechenzeit fiir eine einzelne Distanz-
berechnung steigt etwa linear mit der Anzahl der Dimensionen (Tabelle . Der
Overhead der vorgestellten Pruningkriterien hingegen ist konstant in der Anzahl

der Dimensionen, da fiir einzelne Punkte jeweils nur zwei Gleitkommawerte ver-

4Fiir die 2-dimensionalen Datenséiitze waren auch Clusteranzahlen bis 1024 mit der zur
Verfiigung stehenden Hardware moglich.

72

6.2. Beurteilungskriterien

glichen werden. Die zusétzlichen Distanzberechnungen, wie etwa zur Ermittlung
der Zentrenbewegungen, haben die gleiche Dimension wie andere Distanzberech-
nungen und konnen gegen die eingesparten Distanzberechnungen aufgerechnet
werden. Somit dominiert die Berechnung der Distanzen mit steigender Anzahl
an Dimensionen das Laufzeitverhalten. Die Anzahl der Distanzberechnungen
ist dementsprechend ein Indikator, aber nicht das entscheidende Kriterium fiir
die benotigte Realzeit. Eine Einsparung von Distanzberechnungen ist nicht

unmittelbar fur den Benutzer sichtbar.

Der benotigte Hauptspeicher schrinkt die Auswahl der moglichen Varianten
abhédngig vom Zielsystem moglicherweise ein, wenn der Speicher nicht ausrei-
chend ist, um die genutzten Datenstrukturen vollsténdig aufzunehmen. Dieser
sollte daher auch Bestandteil der Beurteilung sein. Eine verlédssliche externe
Messung stellte sich in der Praxis allerdings als schwierig heraus. Beispiels-
weise hatte der Lloyd in einigen Féllen eine groflere maximale Resident Set
Size (RSS) als beschleunigte Algorithmen, obwohl der Lloyd keine zusétzlichen
Daten speichert und alle beschleunigten Algorithmen mindestens obere und
untere Schranken speichern. Aus diesem Grund ist der benotigte Hauptspeicher

hier nicht Teil der Beurteilung.

Zur Ermittlung des Anteils der Distanzberechnungen an der Gesamtlaufzeit
wurde die Dauer einer einzelnen Distanzberechnung auf dem zuvor vorgestellten
Testsystem bestimmt. Um den Einfluss des Messfehlers gering zu halten, wurden
jeweils 50 000 000 Distanzberechnungen durchgefithrt und die Gesamtzeit durch
die Anzahl der Distanzberechnungen geteilt. Die Ergebnisse finden sich in
Tabelle [6.11

In niedrigen Dimensionen dominiert der Overhead des Funktionsaufrufs, die
benotigte Zeit pro Dimension nimmt daher anfangs ab. In héheren Dimensionen
sind mehr Hauptspeicherzugriffe notwendig, die Zeit pro Dimension nimmt da-
her wieder zu. Auffillig ist der Sprung der Laufzeit pro Dimension bei exakt 32
Dimensionen. Ein Test mit dem Programm perf auf einem nicht-virtualisierten
System mit Intel Core i5 der Sandy Bridge-Architektur legt nahe, dass die-
se Anomalie durch schlechte Sprungvorhersage (englisch ,,Branchprediction®)
verursacht wird (Listing [6.4)). Eine Verifizierung auf dem Testsystem ist nicht
moglich, die entsprechenden Daten stehen durch die Virtualisierung nicht zur

Verfiigung.

73

Kapitel 6. Empirische Untersuchung

d H Zeit pro Distanz | Zeit pro Dimension

2 5,35 ns 2,67 ns

4 6,82 ns 1,70 ns

8 11,12 ns 1,39 ns
16 19,59 ns 1,22 ns
31 36,52 ns 1,18 ns
32 42,36 ns 1,32 ns
33 39,05 ns 1,18 ns
64 75,92 ns 1,19ns
128 165,21 ns 1,29 ns
256 338,01 ns 1,32 ns
512 681,56 ns 1,33 ns
1024 1366,72 ns 1,33 ns
2 4,71 ns 2,351ns

3 5,95 ns 1,98 ns

9 11,84 ns 1,32 ns
17 21,08 ns 1,24 ns
54 63,38 ns 1,17 ns
68 83,41 ns 1,23 ns
74 93,60 ns 1,26 ns
784 1039,61 ns 1,33 ns

Tabelle 6.1.: Bendtigte Zeit fiir eine Distanzberechnung abhédngig von der Anzahl
der Dimensionen d. Die Anzahl der Dimensionen ist einmal als Zwei-
erpotenzen und einmal als die Grofle der tatsdchlich verwendeten
Datensétze gewahlt.

74

6.3. Beurteilung

1 Performance counter stats for 'target/benchmark 31':

2

3 [...]

4 3,397,612,451 branches # 1482.261 M/sec (83.43%)
5 64,148 branch-misses # 0.00% of all branches (83.33%)
6

7 2.293598268 seconds time elapsed

8

9 Performance counter stats for 'target/benchmark 32':

10

11 [...]

12 3,504,524,873 branches # 1436.719 M/sec (83.45%)
13 49,411,428 branch-misses # 1.41% of all branches (83.33%)
14

15 2.442455416 seconds time elapsed

16

17 Performance counter stats for 'target/benchmark 33':

18

19 [...]

20 3,602,623,395 branches # 1545.174 M/sec (83.36%)
21 40,967 Dbranch-misses # 0.00% of all branches (83.24%)
22

23 2.331939048 seconds time elapsed

Listing 6.4: Schlechte Sprungvorhersage bei 32 Dimensionen.

6.3. Beurteilung

Wir beginnen die Auswertung der Messdaten mit einer Sicht von auflen und
vergleichen die Algorithmenvarianten als Ganzes gegeneinander anhand der
zuvor vorgestellten Beurteilungskriterien. Ziel soll es sein, interessante Ansétze
fiir die nachfolgende Untersuchung der Algorithmen zu finden. Dartiber hinaus
soll, falls moglich, abhéngig von Datensatz und Anzahl der gewtinschten Cluster,
eine Empfehlung fiir die Wahl einer Algorithmenvariante gegeben werden.
Als Vorbereitung fiir die Beurteilung der Leistung der Einzelkomponenten
innerhalb einer Algorithmenvariante erfolgt nach dieser Gegentiberstellung
der Algorithmen eine Untersuchung des Clusteringverlaufs fiir die einzelnen
Datenséatze, um beispielsweise das Verhéltnis der aktiven und statischen Cluster
(Definition |5) zu bestimmen. Abschliefend wird die ,,Blackbox* geéffnet, um
zu untersuchen, welche Einzelkomponenten zu welchem Anteil die Leistung der
Algorithmen beeinflussen. Ziel soll es sein, die zu Beginn gewonnenen Ergebnisse
besser erklaren zu kénnen und Ansétze zur weiteren Verbesserung der Leistung

zu finden.

6.3.1. Vergleich der Algorithmen

Zum Vergleich der Algorithmen fiihren wir den Begriff der Dominanz ein.

75

Kapitel 6. Empirische Untersuchung

Definition 8 (Dominanz)

Eine Algorithmenvariante A dominiert eine Algorithmenvariante B, wenn A

-

konsequent eine bessere Leistung als B liefert.

Zunéchst betrachten wir die Dominierungen unter Verwendung der Anzahl
der Distanzberechnungen als Kriterium.

Ein Blick auf Tabelle zeigt, dass die Situation dort eindeutig ist. Lediglich
drei Varianten des Elkan sind undominiert. Der regulire Elkan und der Elkan
unter Verwendung von Norm of Sums dominieren nahezu alle anderen Algorith-
men und Algorithmenvarianten. Dies ist wenig tiberraschend, die grofie Anzahl
an unteren Schranken des Elkan erlaubt eine feingranulare Aktualisierung der
Schranken nach einer Bewegung der Clusterzentren.

Auffillig ist hingegen, dass der Simplified Elkan mit Norm of Sums undo-
miniert ist. Der Einsatz eines zuséatzlichen Pruningkriteriums sollte intuitiv
entweder die Anzahl der Distanzberechnungen reduzieren oder, falls es zu
schwach ist, keine Verdnderung bewirken. Entsprechend ist zu erwarten, dass
der regulare Elkan mit Norm of Sums diesen dominiert. Ein naherer Blick
zeigt, dass diese Auffilligkeit nur beim Clustern des mnist784-Datensatzes
auftritt. Dort hat sie aber einen nicht unerheblichen Einfluss. Beim Clustern
des mnist784 in 96 Cluster bendtigte der Simplified Elkan in einigen Fallen
tiber 4% weniger Distanzberechnungen als der regulare Elkan. Die Ursache
ist der konstante Overhead von k% Distanzberechnungen zur Ermittlung der
Center-Center-Distanzen. Pruningkriterium 2| kann zwar sowohl in Zeile
als auch in Zeile 28 von Algorithmus Distanzen einsparen. Die Anzahl
der eingesparten Distanzen ist allerdings geringer als der konstante Overhead
von k%. Wie wir bei der detaillierten Analyse des Elkan (Seite feststellen
werden, ist der Unterschied zwischen Elkan und Simplified Elkan in Bezug auf
Distanzberechnungen aber generell kleiner als bei einer naiven Betrachtung der
Leistung von Pruningkriterium 2| anzunehmen ware.

In hohen Dimensionen sollte die Wahl daher immer auf eine Elkanvariante
fallen. Dies bestétigt sich mit einem Blick auf die Dominierungen mit Realzeit
als Vergleichskriterium beim Clustering des mnist784-Datensatzes (Tabelle
und entspricht den Erkenntnissen der aktuellen Literatur [Din+15, Abschnitt 5].

Dieser besitzt mit 784 Dimensionen unter den verwendeten Testdatensétzen
die meisten Dimensionen. Auch hier dominieren die Elkanvarianten alle anderen

Algorithmen. Die Simplified-Variante des Elkan erbringt, wie zuvor diskutiert,

76

6.3. Beurteilung

Algorithmus H Dominierte | Dominiert von
ELKAN ns 36
ELKAN 35
ELKAN_ns_simplified 21
ELKAN_ simplified 21

ANNULUS_ ns_noBsearch_originEdge
EXPONION ns

ANNULUS_ ns_simplified noBsearch originEdge
ANNULUS_ ns_ originEdge
ANNULUS_ ns_ simplified_originEdge
ANNULUS_ ns_ noBsearch

ANNULUS_ ns_simplified noBsearch
ANNULUS_ ns

ANNULUS_ ns_ simplified

ANNULUS_ noBsearch_ originEdge
YINYANG2 ns
ANNULUS_ ns_ noBsearch_ originMean
ANNULUS_ simplified noBsearch_ originEdge
ANNULUS_ ns_simplified noBsearch_originMean
ANNULUS_ originEdge

DRAKE ns

DRAKE

ANNULUS_ ns_ originMean

YINYANG2

HAMERLY ns

ANNULUS_ simplified_ originEdge
ANNULUS_ ns_simplified originMean
ANNULUS _ noBsearch

EXPONION

ANNULUS_ simplified_noBsearch

HAMERLY ns_simplified

ANNULUS_ noBsearch_ originMean

oo

N W R OO NN T U | = WD =N W INOW NN OO O

O NN NN DD | LW W W[W W[W[W[]| Ol U O O | | 00| o

ANNULUS_ simplified_noBsearch_ originMean 9
ANNULUS

ANNULUS_ simplified

HAMERLY 7
ANNULUS_ originMean 10
HAMERLY _ simplified 11
ANNULUS_ simplified_originMean 20
LLOYD 38

Tabelle 6.2.: Dominierungen unter Verwendung der Anzahl der Distanzberechnun-
gen als Kriterium.

7

Kapitel 6. Empirische Untersuchung

Algorithmus H Dominierte | Dominiert von
ELKAN ns simplified 37
ELKAN ns 35
ELKAN 35
ELKAN_ simplified 35
YINYANG2 ns 32
DRAKE ns 31
DRAKE 31
YINYANG2 31
HAMERLY ns_simplified 17
HAMERLY ns 16
EXPONION ns 16
ANNULUS_ ns_simplified_noBsearch 4

ANNULUS_ ns_simplified originMean

ANNULUS_ ns_ simplified_ originEdge

ANNULUS_ ns_ simplified

ANNULUS_ ns_noBsearch_ originMean

ANNULUS_ ns_ originEdge

ANNULUS_ ns_ simplified_noBsearch_ originMean

ANNULUS_ ns_ simplified noBsearch_originEdge

ANNULUS_ ns_noBsearch_ originEdge

ANNULUS ns noBsearch

ANNULUS_ ns_ originMean

©O| 00| CO| 00| CO| CO| CO| CO| CO| CO| QO CO| CO| QO| U | x| x| | | O O

78

4

4

4

4

4

4

4

4

4

4
ANNULUS ns 3 8
HAMERLY _simplified 2 11
HAMERLY 1 11
EXPONION 1 11
ANNULUS_ simplified_ originEdge 1 11
ANNULUS_ simplified noBsearch_ originMean 1 11
ANNULUS_ simplified 1 11
ANNULUS_ simplified_ noBsearch_ originEdge 1 11
ANNULUS_ originEdge 1 11
ANNULUS_ simplified_ originMean 1 11
ANNULUS_ simplified_noBsearch 1 11
ANNULUS_ noBsearch_ originMean 1 11
ANNULUS_ originMean 1 12
ANNULUS_ noBsearch_ originEdge 1 22
ANNULUS 1 23
ANNULUS noBsearch 1 23
LLOYD 0 38

Tabelle 6.3.: Dominierungen unter Verwendung der Realzeit fiir mnist784.

6.3. Beurteilung

die bessere Leistung in Bezug auf Distanzberechnungen. In Verbindung mit
dem geringeren Overhead wird so auch eine bessere Leistung in Bezug auf die
Realzeit erreicht.

Bei den niedrigdimensionalen Datensitzen’| in Tabelle ist die Situation
weniger eindeutig. Praktisch alle Varianten von Hamerly, Annulus und Exponion
sind undominiert. Dies andert sich auch nicht, wenn die Annulus-Varianten
mit gedndertem Ursprung unberiicksichtigt bleiben. Umgekehrt sind aber alle
Algorithmen und Varianten, die nicht auf dem Hamerly basieren, dominiert.
Dies entspricht den Aussagen der jeweiligen Originalveroffentlichungen von
Annulus und Exponion ; .

Der Hamerly selbst ist nur im Falle des s1 mit 16 Clustern undominiert. Dies
entspricht den Erwartungen. Annulus und Exponion besitzen jeweils nur kleine
Anpassungen, die speziell den schlechten Fall des Hamerly optimieren sollen.
Im Durchschnitt betrdgt die Differenz zwischen Hamerly und Exponion fiir
den s1 mit 16 Clustern 70 s, ein Unterschied von ungefahr 2% im Vergleich
zur durchschnittlichen Clusteringzeit des Hamerly (3320,9405ps). Dartiber
hinaus ist der Hamerly nur fiir zwei von fiinf Initialisierungen besser als der
Exponion. Fiir die anderen drei Initialisierungen ist entweder der Exponion
schneller oder gleichauf. Falls diese geringe Differenz in der Clusteringzeit
nicht ausschlieSlich auf Messungenauigkeiten zuriick zu fithren ist, ist diese
dennoch so klein, dass diese keinen relevanten Effekt auf einen Einsatz in der
Praxis hatte. Beispielsweise benotigt das Lesen eines 4 kB-Blocks von einer
Solid-state Drive bereits 150 us und das Lesen von 1 MB Daten aus dem
Hauptspeicher 250 s . Die Dauer des Einlesens des Datensatzes dominiert
die Laufzeitdifferenz also deutlich.

Die durchschnittlichen Realzeiten bis zur Konvergenz (Tabellen und
geben etwas mehr Aufschluss iiber die Leistung der undominierten Varianten.
Der Simplified Annulus erzielt insgesamt die beste Leistung. Im Falle des conf-
longdemo ist dieser fiir die durchschnittliche Zeit in allen getesteten Dimensionen
der beste. Er dominiert die anderen Algorithmen aber nicht, da er in Finzelfdllen
bis zu 55 % langsamer als andere Varianten war. Fiir den birch-Datensatz erzielt

der Simplified Annulus bei grofem & eine bis zu 50 % schlechtere Leistung.

52 und 3 Dimensionen

79

Kapitel 6. Empirische Untersuchung

Algorithmus H Dominierte | Dominiert von

EXPONION 10
ANNULUS_ ns_ simplified

ANNULUS_ simplified_ originEdge
ANNULUS_ ns_ simplified_ originMean
ANNULUS_ noBsearch_ originEdge

ANNULUS __simplified

ANNULUS_ ns_originEdge

ANNULUS

ANNULUS_ ns_ originMean

ANNULUS_ originMean
ANNULUS_ns_noBsearch_originEdge
ANNULUS noBsearch
ANNULUS ns noBsearch

EXPONION_ns
ANNULUS_ ns_ simplified_originEdge
ANNULUS_ ns

ANNULUS_ originEdge

ANNULUS_ noBsearch_ originMean
ANNULUS_ns_simplified noBsearch
ANNULUS_ ns_simplified noBsearch_ originEdge
ANNULUS_ simplifiednoBsearch
ANNULUS_ simplified_ noBsearch_ originEdge
HAMERLY ns

HAMERLY

ANNULUS_ ns_noBsearch_ originMean
ANNULUS_ ns_simplified noBsearch originMean
ANNULUS_ simplified_ originMean
ANNULUS_ simplified noBsearch_ originMean
HAMERLY ns_simplified

YINYANG2

HAMERLY _simplified

(=] RUV] Nen) Bl Reo) B Bl Nen) o) Hen) [en)] Nen] o] o) Hen) en) o] o] fen) en] o) fen) Hen] Jen) o) e en)l an] Nean] Jen)

OO OO W& OO OO =T | | | =~ | ~J| | | ~J| ~J|~J| 00| 0| CO| CO| Q0| CO| CO| 0| 00| O] ©|©O|©

YINYANG2 ns 14
ELKAN 27
DRAKE 30
ELKAN simplified 32
DRAKE ns 30
LLOYD 31
ELKAN ns 32
ELKAN ns_simplified 35

Tabelle 6.4.: Dominierungen fiir niedrigdimensionale Datensétze (s1 / birch / conf-
longdemo).

80

18

Algorithmus || 16 | 32 | 48 | 64 | 80 | 96

ANN 0,38s (1.19) | 0,405 (1.12) | 0,625 (L.14) | 0,64s (1.14) | 0,455 (1.02) | 0,365 (1)
ANN_noBs 0,385 (1.2) | 0,41s (1.16) | 0,685 (1.23) | 0,71s (1.26) | 0,52s (1.18) | 0,425 (1.19)
ANN_noBs_oEdge 0,385 (1.21) | 0,41s (1.16) | 0,68s (1.23) | 0,72s (1.27) | 0,52s (1.17) | 0,44s (1.25)
ANN_ noBs_oMean 0,41s (1.29) | 0,45s (1.27) | 0,77s (1.4) 0,81s (1.44) 0,61s (1.38) 0,50 (1.4)
ANN_ns 0,41s (1.29) | 0,41s (1.15) | 0,64s (1.16) | 0,65s (1.15) | 0,465 (1.04) | 0,36s (1.03)
ANN_ns_noBs 0,42s (1.31) | 0,43s (1.22) | 0,71s (1.3) 0,74s (1.31) | 0,58s (1.21) | 0,43s (1.21)
ANN_ ns noBs_oEdge 0,41s (1.3) 0,44s (1.23) | 0,71s (1.29) 0,74s (1.31) 0,54s (1.21) 0,43s (1.23)
ANN_ns noBs oMean 0,44s (1.38) | 0,48s (1.34) | 0,78s (1.42) 0,84s (1.48) 0,63s (1.43) 0,51s (1.44)
ANN ns oEdge 0,41s (1.28) | 0,42s (1.17) | 0,65s (1.18) 0,65s (1.14) 0,45s (1.03) 0,36s (1.03)
ANN_ns_oMean 0,43s (1.35) | 0,455 (1.26) | 0,71s (1.29) | 0,72s (1.27) | 0,51s (L.15) | 0,41s (1.15)
ANN_ns_simp 0,355 (1.09) | 0,385 (1.07) | 0,585 (1.06) | 0,59s (1.04) | 0,48s (1.08) | 0,44s (1.24)
ANN_ns_simp_noBs 0,355 (1.09) | 0,41s (1.14) | 0,665 (1.2) | 0,71s (1.26) | 0,60s (1.36) | 0,57s (1.62)
ANN_ns_simp_noBs_oEdge 0,35s (1.11) | 0,41s (1.15) | 0,66s (1.2) 0,70s (1.24) 0,61s (1.38) 0,59 (1.66)
ANN_ns_simp_noBs_oMean || 0,38s (1.18) | 0,46s (1.29) | 0,76s (1.39) 0,84s (1.48) 0,74s (1.69) 0,75s (2.12)
ANN_ ns_simp_oEdge 0,34s (1.08) | 0,38s (1.06) | 0,57s (1.05) 0,60s (1.06) 0,47s (1.06) 0,44s (1.25)
ANN_ ns_simp_oMean 0,36s (1.14) | 0,43s (1.2) 0,67s (1.22) 0,70s (1.24) 0,57s (1.28) 0,555 (1.55)
ANN_oEdge 0,38s (1.2) | 0,39s (1.1) | 0,61s (L.11) | 0,63s (1.11) | 0,44s (1) 0,355 (1)
ANN_oMean 0,41s (1.29) | 0,44s (1.24) | 0,69s (1.26) | 0,72s (1.27) | 0,51s (1.16) | 0,40s (1.14)
ANN_simp 0,325 (1.01) | 0,36s (1) 0,555 (1) 0,57s (1) 0,47s (1.06) | 0,44s (1.23)
ANN_simp_noBs 0,335 (1.05) | 0,40s (1.13) | 0,65s (1.17) | 0,69s (1.22) | 0,60s (1.37) | 0,60s (1.69)
ANN_simp_noBs_oEdge 0,33s (1.04) | 0,41s (1.15) | 0,655 (1.18) | 0,70s (1.24) | 0,60s (1.37) | 0,61s (1.72)
ANN_simp_noBs_oMean 0,365 (1.12) | 0,47s (1.32) | 0,79s (1.44) | 0,90s (1.59) | 0,83s (1.87) | 0,855 (2.4)
ANN_simp_oEdge 0,32s (1) | 0,365 (1.02) | 0,555 (1) 0,57s (1) 0,47s (1.06) | 0,44s (1.24)
ANN__simp_ oMean 0,34s (1.08) | 0,42s (1.17) | 0,65s (1.18) 0,68s (1.2) 0,56 (1.28) 0,54s (1.54)
DRAKE 0,03s (2.92) | 1,455 (4.09) | 2,49s (4.53) | 3,36s (5.93) | 2,61s (5.91) | 2,53s (7.15)
DRAKE_ns 1,255 (3.01) | 1,99s (5.6) | 3,58s (6.52) | 3,92s (6.92) | 3,00s (6.79) | 2,64s (7.46)
ELKAN 0,995 (3.11) | 1,54s (4.34) | 3,20s (5.83) | 3,94s (6.95) | 2,79s (6.32) | 2,11s (5.96)
ELKAN ns 1,455 (4.56) | 2,34s (6.59) | 5,12s (9.32) | 6,39s (11.29) | 4,44s (10.07) | 3,44s (9.73)
ELKAN ns_simp 1,53s (4.81) | 2,485 (6.98) | 5,545 (10.07) | 7,155 (12.62) | 5,405 (12.45) | 4,905 (13.86)
ELKAN simp 1,125 (3.53) | 1,765 (4.95) | 3,765 (6.85) | 4,77s (3.42) | 3,85s (8.73) | 3,39s (9.57)
EXPONION 0,325 (1) 0,365 (1.01) | 0,605 (1.09) | 0,64s (1.14) | 0,495 (1.12) | 0,42s (L.18)
EXPONION_ns 0,34s (1.08) | 0,395 (1.09) | 0,63s (1.14) | 0,67s (L.18) | 0,52s (1.18) | 0,44s (1.24)
HAMERLY 0,40s (1.26) | 0,485 (1.36) | 0,84s (1.54) | 0,92s (1.63) | 0,71s (1.61) | 0,595 (1.66)
HAMERLY ns 0,435 (1.36) | 0,505 (1.42) | 0,85s (1.55) | 0,94s (1.66) | 0,71s (1.61) | 0,585 (1.64)
HAMERLY ns_simp 0,37s (1.18) | 0,51s (1.44) | 0,86s (1.57) | 0,98s (1.73) | 0,80s (2.02) | 0,025 (2.6)
HAMERLY_simp 0,35s (1.1) | 0,50s (1.42) | 0,88s (1.6) 1,01s (1.79) | 0,95s (2.15) | 0,98s (2.77)
LLOYD 1,595 (5.01) | 2,67s (7.5) | 5,82s (10.58) | 7,37s (13) 5,485 (12.43) | 4,845 (13.69)
YINYANG2 0,445 (1.38) | 0,535 (1.49) | 0,885 (1.6) | 0,97s (1.71) | 0,825 (1.86) | 0,725 (2.03)
YINYANG2_ ns 0,495 (1.55) | 0,64s (1.79) | 1,06s (1.93) | 1,24s (2.19) | 1,02s (2.31) | 0,88s (2.5)

Tabelle 6.5.: Durchschnittliche Zeiten zum Clustering des birch-Datensatzes. In Klammern ist der Faktor im Vergleich zur besten Zeit angegeben.

sunyrogmog “¢°9

¢8

Algorithmus || 16 | 32 | 48 | 64 | 80 | 96

ANN 0,68s (1.17) | 1,13s (1.11) 1,54 (1.07) 1,88s (1.1) 2,33s (1.02) 2,245 (1.02)
ANN_noBs 0,71s (1.22) | 1,29s (1.26) | 1,92s (1.33) | 2,40s (1.4) 3,245 (1.42) | 3,21s (1.46)
ANN_noBs_oEdge 0,725 (1.24) | 1,355 (1.32) | 2,06s (1.43) | 2,60s (1.52) | 3,555 (1.56) | 3,555 (1.62)
ANN_ noBs_oMean 0,755 (1.28) | 1,43s (1.4) 2,19s (1.52) 2,785 (1.62) 3,91s (1.71) 3,89s (1.77)
ANN_ns 0,72s (1.23) | 1,155 (1.13) | 1,60s (1.11) | 1,03s (1.13) | 2,42s (1.06) | 2,28s (1.04)
ANN_ns_noBs 0,755 (1.28) | 1,34s (1.31) | 2,00s (1.39) | 2,47s (1.44) | 3,34s (1L47) | 3,28s (1.5)
ANN_ ns_noBs_oEdge 0,77s (1.32) | 1,41s (1.38) | 2,06s (1.43) 2,61s (1.52) 3,545 (1.55) 3,52s (1.61)
ANN_ns noBs oMean 0,79s (1.34) | 1,47s (1.44) | 2,24s (1.56) 2,83s (1.65) 3,92s (1.72) 3,95s (1.8)
ANN_ns_oEdge 0,73s (1.25) | 1,10s (1.17) | 1,655 (1.15) | 2,01s (1.17) | 2,54s (1.12) | 2,43s (1.11)
ANN_ns_oMean 0,755 (1.28) | 1,25s (1.22) | 1,79s (1.24) | 2,165 (1.26) | 2,78s (1.22) | 2,64s (1.21)
ANN_ns_simp 0,635 (1.08) | 1,065 (1.04) | 1,405 (1.04) | 1,78s (1.04) | 2,34s (1.03) | 2,295 (1.04)
ANN_ns_simp_noBs 0,665 (1.12) | 1,235 (1.21) | 1,90s (1.32) | 2,38s (1.39) | 3,31s (1.45) | 3,355 (1.53)
ANN_ns_simp_ noBs_oEdge 0,67s (1.15) | 1,31s (1.29) | 2,01s (1.39) 2,56 (1.49) 3,655 (1.6) 3,76s (1.71)
ANN_ns_simp_noBs_oMean || 0,70s (1.2) 1,40s (1.37) | 2,22s (1.54) 2,845 (1.66) 4,14 (1.82) 4,295 (1.96)
ANN_ ns_simp_ oEdge 0,66s (1.12) | 1,09s (1.07) | 1,58s (1.09) 1,88s (1.1) 2,48 (1.09) 2,43s (1.11)
ANN_ ns_simp_ oMean 0,67s (1.15) | 1,20s (1.17) | 1,73s (1.2) 2,085 (1.21) 2,79s (1.22) 2,73s (1.25)
ANN_oEdge 0,695 (1.17) | 1,16s (1.13) | 1,61s (1.12) | 1,94s (1.13) | 2,51s (L.1) 2,375 (1.08)
ANN_oMean 0,73s (1.24) | 1,23s (1.2) | 1,78s (1.24) | 2,12s (1.24) | 2,77s (1.22) | 2,63s (1.2)
ANN_simp 0,595 (1) 1,02s (1) 1445 (1) I,71s (1) 2,285 (1) 2,195 (1)
ANN_simp noBs 0,62s (1.06) | 1,23s (1.21) | 1,91s (1.33) 2,36s (1.38) 3,43s (1.51) 3,44 (1.57)
ANN_simp_noBs_oBEdge 0,655 (1.11) | 1,305 (1.28) | 2,06s (1.43) | 2,555 (1.49) | 3,71s (1.63) | 3,795 (1.73)
ANN_simp_noBs_oMean 0,665 (1.14) | 1,385 (1.36) | 2,255 (1.56) | 2,845 (1.66) | 4,17s (1.83) | 4,31s (1.97)
ANN_simp_oRdge 0,605 (1.03) | 1,085 (1.06) | 1,565 (1.08) | 1,84s (1.08) | 2,48s (1.09) | 2,425 (1.11)
ANN__simp_ oMean 0,63s (1.07) | 1,16s (1.14) | 1,71s (1.19) 2,03s (1.18) 2,785 (1.22) 2,73s (1.24)
DRAKE 1,525 (2.6) | 3,48s (3.41) | 6,225 (4.32) | 9,40s (5.48) | 11,04s (5.24) | 12,525 (5.71)
DRAKE_ns 1,99s (3.4) | 4,665 (4.57) | 7,535 (5.23) | 10,865 (6.34) | 13,31s (5.84) | 13,525 (6.17)
ELKAN 1,765 (3.01) | 4,11s (4.03) | 7,23s (5.02) | 11,055 (6.45) | 14,81s (6.5) | 14,78s (6.74)
ELKAN ns 2,375 (4.06) | 5,665 (5.55) | 10,37s (7.2) | 16,01s (9.34) | 21,09s (9.26) | 21,235 (9.69)
ELKAN ns_simp 2,105 (3.59) | 4,745 (4.65) | 8,79s (6.1) 13,925 (8.12) | 18,555 (3.15) | 19,085 (8.7)
ELKAN_simp 1,57s (2.68) | 3,405 (3.34) | 6,055 (4.2) 9,435 (5.5) 12,87s (5.65) | 12,975 (5.92)
EXPONION 0,625 (1.07) | 1,3Ls (1.29) | 2,07s (1.44) | 2,545 (1.48) | 3,555 (1.56) | 3,465 (1.58)
EXPONION_ns 0,665 (1.13) | 1,385 (1.35) | 2,08s (1.45) | 2,60s (1.51) | 3,58s (1.57) | 3,525 (1.6)
HAMERLY 0,725 (1.22) | 1,48s (1.45) | 2,335 (1.62) | 3,085 (1.77) | 4,39s (1.93) | 4,425 (2.02)
HAMERLY ns 0,765 (1.3) | 1,535 (1.5) | 2,39s (1.66) | 3,055 (1.78) | 4,425 (1.94) | 4,505 (2.05)
HAMERLY ns_simp 0,695 (1.17) | 1,525 (1.49) | 2,48s (1.72) | 3,17s (1.85) | 4,84s (2.12) | 5,005 (2.32)
HAMBERLY_simp 0,65s (1.1) | 1,46s (1.44) | 2,44s (1.69) | 3,14s (1.83) | 4,79s (2.1) 5,065 (2.31)
LLOYD 2,435 (4.16) | 5,68s (5.57) | 10,60s (7.35) | 16,64s (9.71) | 22,07s (9.69) | 22,67s (10.34)
YINYANG2 0,755 (1.29) | L,44s (L41) | 2,265 (1.57) | 2,83s (1.65) | 3,335 (1.68) | 3,865 (1.76)
YINYANGZ ns 0,825 (1.4) | 1,64s (1.61) | 2,52s (1.75) | 3,27s (1.01) | 4,48s (1.97) | 4,49s (2.05)

Tabelle 6.6.: Durchschnittliche Zeiten zum Clustering des conflongdemo-Datensatzes. In Klammern ist der Faktor im Vergleich zur besten Zeit angegeben.

Sunyonsiojuy) ayostirdurs g [o3rdesy

6.3. Beurteilung

In der Blackbox-Beurteilung verbleiben die mittleren Dimensionen| Fiir
diese ist die Situation noch weniger eindeutig, als fiir die niedrigen Dimensionen.
Varianten des Annulus erreichen auch hier regelméflig sehr gute Leistungen. Eine
pauschalisierte Empfehlung des Annulus wére hier allerdings nicht angemessen.
Ein Blick auf die Entwicklung der Rangliste fiir steigende & (Abbildungen [6.1]
und bis und die Rangliste fiir steigende Grofien des zu clusternden
Datensatzes (Abbildung zeigt interessante Trends.

Zunéchst fallt auf, dass der Exponion fiir £ = 16 oftmals auf den niedrigen
Platzen zu finden ist, mit zunehmendem k aber an Leistung einbiifit. Dies ist
wohl in der fehlenden Implementierung der binaren Suche der Kandidaten-
zentren begriindet. Abbildung zeigt beispielhaft, dass der Exponion fiir
den housel6h-Datensatz in Bezug auf Distanzberechnungen eine gleichbleibend
gute Pruningleistung relativ zu den anderen Algorithmen erreicht. Daraus folgt,
dass der Anteil des Overheads angestiegen ist.

Der zweite interessante Trend ist, dass der Yinyang mit zunehmender Grofie
der zu bearbeitenden Daten an Leistung gewinnt. Zu bearbeitende Daten ist
als Produkt aus Clusteranzahl k, Dimension d und Anzahl der Datenpunkte
N zu verstehen. Dieser Effekt ist besonders ausgepréigt fiir eine steigende
Clusteranzahl zu beobachten. In allen Abbildungen bis ist zu sehen,
dass der Rang des Yinyang mit zunehmender Anzahl von Clustern steigt.
Insbesondere ist der Yinyang der einzige Algorithmus, der seine Platzierung
in Bezug auf Distanzberechnungen deutlich steigern konnte. Alle anderen
Algorithmen und Varianten behalten relativ zueinander ihre Platzierungen.
Beispielhaft ist dies fiir den kddcup04-Datensatz in Abbildung zu sehen.
Analog tritt dies auch fiir andere Datensatze auf. Diese Beobachtung deckt
sich mit den Aussagen der Originalveroffentlichung des Yinyang ,
Abschnitt 5]. Bei einer geringen Anzahl von Clustern arbeitet der Yinyang
mit einer geringen Anzahl von Gruppen und ist entsprechend stark von Big
Movern betroffen. Mit zunehmender Anzahl an Clustern nimmt die Anzahl
der Gruppen proportional zu, sodass bei einer gleichbleibenden Menge von Big
Movern ein geringerer Anteil von Clustern durch diese betroffen ist. Dartiber
hinaus sorgt die Gruppierung rdaumlich benachbarter Cluster dafiir, dass sich

Paare von aktiven Clusternm wahrscheinlich in der gleichen Gruppe befinden,

69 bis 74 bei unseren Datensitzen
"Ein Paar von aktiven Clustern ist so zu verstehen, dass ein Datenpunkt von einem der
beiden Cluster in den anderen wechselt.

83

Kapitel 6. Empirische Untersuchung

da Punkte ihre Zuordnung in der Regel nur zwischen unmittelbar benachbarten
Clustern bewegen. Umgekehrt folgt daraus, dass die Wahrscheinlichkeit sinkt,
dass sich aktive Cluster in Gruppen aus statischen Clustern befinden. Wenn
eine Gruppe ausschlielich aus statischen Clustern besteht, dann ist keine
Anpassung der Schranke erforderlich. Fiir Cluster in statischen Gruppen wird
eine gute Pruningleistung erzielt.

Abbildung[6.8| zeigt ein dhnliches, aber weniger ausgeprégtes Verhalten, wenn
man die Anzahl der Datensétze nach dem Produkt von Dimension und Anzahl

der Datenpunkte sortiert.

84

6.3. Beurteilung

colormoments (N = 68040,d = 9)

10 |-

Rang
[\
o
I

40

—s#¢— ANN-ns-simp-oEdge
—e— ANN

—l— ANN-simp-oEdge
—8— DRAKE

| | —@— ELKAN

—@— EXPONION

—o— HAMERLY

—e— LLOYD

—@— YINYANG2

Abbildung 6.1.

0
10
eT0}
z 920
o'
30
40

o~

: Rangliste der durchschnittlichen
colormoments-Datensatzes.

Zeiten zum Clustering des

housel6h (N =22784,d = 17)

T
—se— ANN-oEdge

—@— ANN

—@— DRAKE
—@— ELKAN

| | —e— EXPONION
—@— HAMERLY
—@— LLOYD

—0— YINYANG2

Abbildung 6.2.: Rangliste der durchschnittlichen Zeiten zum Clustering des hou-
sel6h-Datensatzes.

85

Kapitel 6. Empirische Untersuchung

housel6h (N = 22784,d = 17), Distanzberechnungen

0
10
20
z 20
&
30

40

Abbildung 6.3.:

—@— ANN

—e— DRAKE
—@— ELKAN
—@— EXPONION
—@— HAMERLY
—— LLOYD
—@— YINYANG2

———0—4¢

16 32 48

k

64

80

96

covtype (N = 581012,d = 54)

Rangliste der durchschnittlichen Distanzberechnungen zum Clus-
tering des housel6h-Datensatzes.

w
(e}
T

40

—s¢— ANN-ns-oEdge
—l— ANN-oEdge
—@— ANN

—@— DRAKE

—@— ELKAN

—@— EXPONION
—@— HAMERLY
—e— LLOYD

—@— YINYANG2

Abbildung 6.4.: Rangliste der durchschnittlichen Zeiten zum Clustering des
covtype-Datensatzes.

86

16 32 48

uscensus (N = 2458285, d = 68)

6.3. Beurteilung

0,
10 |-
o0
%20,
~
30 |-
407\ ! ! ! ! !

—_@— ANN

—e— DRAKE
—— ELKAN-ns
—@— ELKAN

—s¢e— ELKAN-simp
—se— EXPONION-ns
—@— EXPONION
— @ HAMERLY
—@— LLOYD

—s#e— YINYANG2-ns
—0— YINYANG2

-

Abbildung 6.5.: Rangliste der durchschnittlichen Zeiten zum Clustering des

uscensus-Datensatzes.

kddcup04 (N = 145751,d = 74)

—s¢— ANN-ns-simp
—@— ANN

—@— DRAKE
—@— ELKAN
—#¢— ELKAN-simp
—@— EXPONION
—@— HAMERLY
—e— LLOYD
—@— YINYANG2

a
%7
[/
il
)

40 ‘

Abbildung 6.6.: Rangliste der durchschnittlichen Zeiten zum Clustering des kdd-

cup04-Datensatzes.

Kapitel 6. Empirische Untersuchung

kddcup04 (N = 145751, d = 74, Distanzberechnungen)

‘ ‘ ‘ ‘ ‘ ‘ —@— ANNULUS
O [—@— DRAKE
—@— ELKAN
wg —e— EXPONION
10 [—0— HAMERLY
—@— LLOYD
a0 —@— YINYANG2
=i
g 20/ === S
[
30
m::xig
40 | | | | | |
16 32 48 64 80 96
k

Abbildung 6.7.:

Rangliste der durchschnittlichen Distanzberechnungen zum Clus-

tering des kddcup04-Datensatzes.

—@— ANN
0 y —@— DRAKE
/\\ 48 2R —@— ELKAN
“'Qf;\\\‘ « ’ —e— EXPONION
101 0“9 ‘\ "'& — & HAMERLY
ih ‘\k ’45\“ Y —@— LLOYD
%O ;l’\’ ix:.,, ‘/‘ —@— YINYANG?2
\\
S 20| . /\\\\ ,
Q“\A/'ﬁlb,, uV
//‘ ‘z o)Y
30 ; v m\\y [W i
AN
40 | i

Datensatz

Abbildung 6.8.: Rangliste der durchschnittlichen Zeiten zum Clustering in 96 Clus-
ter abhéngig vom Datensatz. Die Datensétze sind aufsteigend nach
dem Produkt aus der Anzahl der Datenpunkte und der Dimension

geordnet.

88

6.3. Beurteilung

6.3.2. Verhalten der Datensatze

Die Leistung der Pruningkriterien hangt entscheidend von der Genauigkeit der
eingesetzten Schranken ab. Je genauer und somit kleiner die obere Schranke
ist, desto wahrscheinlicher ist es, dass diese eine untere Schranke unterschreitet.
Auch die Fliache des Annulus von Pruningkriterium [3] ist unmittelbar mit
der Grofle der oberen Schranke verbunden. Die Bewegung der Clusterzentren
ist der Aspekt des Clusterings, der es erfordert, die Schranken anzupassen.
Dieser Abschnitt untersucht daher die Bewegungen der Clusterzentren in den
eingesetzten Datensatzen.

Zunachst mochten wir einen Fokus auf das Verhéltnis aus statischen und
aktiven Clustern setzen. Die Clusterzentren eines statischen Clusters (Definiti-
on |5) bewegen sich nicht. Fiir diese ist keine weitere Anpassung der Schranken
notwendig. Abbildungen bis zeigen fur ausgewihlte Datensitze den
Anteil der aktiven Cluster, also der Cluster, die an der Anpassung der Schranken
beteiligt sind, abhéngig von der Iteration. Die einzelnen farbigen Verlaufslinien
entsprechen jeweils einer unterschiedlichen Initialisierung mit k-means—++.

Es zeigt sich, dass nicht angenommen werden kann, dass statische Cluster der
aktuellen Iteration auch in zukiinftigen Iterationen statische Cluster sind. In
mehreren Beispielen ist zu erkennen, dass nach lokalen Minima aktiver Cluster
wieder deutlich hohere Maxima folgen. Besonders ausgepragt ist dies fiir die
schwarze Initialisierung in Abbildung [6.11b] Nachdem in Iteration 78 bereits
tiber 96 % der Cluster statische Cluster waren, waren noch rund 200 weitere Ite-
rationen erforderlich, bis der Zustand konvergiert ist. Die Anzahl der statischen
Cluster reduzierte sich stellenweise wieder auf lediglich 40 %.

Je groBler die Anzahl der Cluster, desto frither sinkt die Anzahl der aktiven
Cluster. Abbildung zeigt, dass die Anzahl der aktiven Cluster bei geringer
Anzahl erst nach etwa 50 % der Iterationen beginnt abzunehmen. Bei groflerer
Anzahl von Clustern ist die Krimmung deutlich geringer ausgeprigt. Die
Anzahl der aktiven Cluster sinkt etwa linear. Die Verlaufsgraphen in [KFNOO]
konnten mit den in dieser Arbeit verwendeten Datensétzen, Initialisierungen und
Clusteranzahlen nicht bestétigt werden. In [KFNOO] verhélt sich die Anzahl der
aktiven Cluster ungefihr umgekehrt proportional zu der Anzahl der Iterationen.
Insbesondere nahm die Anzahl der aktiven Cluster zu Beginn stark ab, was

gegensatzlich zu den Ergebnissen dieses Abschnitts ist. Am ehesten entspricht

Abbildung dem in [KFNOO] beobachteten Verlauf.

89

Kapitel 6. Empirische Untersuchung

Neben dem Verhéltnis von aktiven und statischen Cluster zeigen die Verlaufs-
graphen auch den Einfluss der Initialisierung auf die Anzahl der bendtigten
Iterationen. Dieser Einfluss ist deutlich zu erkennen. Abbildung zeigt,
dass die schlechteste Initialisierung des conflongdemo fiir 96 Cluster (gelb) fast

drei Mal so viele Iterationen zur Konvergenz benotigt wie die beste (schwarz).

1 [|
0,5 |
0 L | | ‘ | 0 | | | |
0 100 200 0 50 100
(a) k = 16 (b) k = 96

Abbildung 6.9.: Anteil der aktiven Cluster pro Iteration im birch-Datensatz.

[T \\ T 7 1F 7
05| | 05| |
0 L | | ‘ | | | 0 L | | \“ | |
0 50 100 150 0 100 200 300

(a) k =16 (b) k = 96

Abbildung 6.10.: Anteil der aktiven Cluster pro Iteration im conflongdemo-
Datensatz.

90

1 ﬂ%]
0,5 |
O L | | | | | |
0 20 40 60 80

Abbildung 6.11

(a) k=16

1 [-
Al
0,5 .
0 7\ | | | | |
0 20 40 60 80
(a) k=16

6.3.

Beurteilung

.t Anteil der aktiven Cluster pro Iteration im mnist784-Datensatz.

(b) k = 96

Abbildung 6.12.: Anteil der aktiven Cluster pro Iteration im uscensus-Datensatz.

91

Kapitel 6. Empirische Untersuchung

(e) k =80 (f) k=96

Abbildung 6.13.: Anteil der aktiven Cluster nach Clusteringfortschritt im
conflongdemo-Datensatz. Die X-Achse repriasentiert die normali-
sierte Iteration. Bei 1 ist das Clustering abgeschlossen.

92

6.3. Beurteilung

Statische Cluster konnen als Spezialfall des Betrags der Zentrenbewegung
aufgefasst werden. Letztere ist das eigentlich Entscheidende fiir die Genauigkeit
der Schranken. Abbildungen und zeigen, dass die maximale Bewegung
der Clusterzentren relativ zu der durchschnittlichen Distanz der Clusterzentren,
insbesondere in spateren Iterationen, zu vernachlassigen ist. Der in diesen
Abbildungen dargestellte Faktor entspricht in einer idealisierten Situatio
der Anzahl der Iterationen, nach denen fiir einen Datenpunkt, der sich direkt
neben einem Clusterzentrum befindet und somit eine sehr kleine obere Schranke
besitzt, eine neue Distanzberechnung spéatestens erforderlich ware. Fiir einen
Datenpunkt, der auf der Hélfte der Distanz zu einem anderen Clusterzentrum
und somit direkt an der Grenze der Voronoizelle liegt, ist in nahezu jeder
Iteration eine Distanzberechnung erforderlich, unabhingig davon, wie stark
sich die Clusterzentren bewegen. Zwischen diesen beiden Grenzfallen verhalt
sich die Anzahl der Iterationen, die mit einer urspriinglich scharfen unteren
Schranke ohne zuséatzliche Distanzberechnungen tiberbriickt werden kénnen
linear.

Die zuvor betrachtete maximale Bewegung der Clusterzentren ist der re-
levante Aspekt fiir den Einfluss der Clusterbewegungen beim Einsatz der
Hamerly-Schranke (Seite [24)). Diese ist, wie dort diskutiert, stark anfillig fiir
Big Mover. Abschlielend soll fiir die Datensitze daher noch ermittelt werden,
ob beim Clustering Big Mover auftreten oder ob die meisten Cluster ahnliche
Distanzen zuriicklegen. Im Falle der Existenz von Big Movern soll zusétzlich
untersucht werden, wie stark die Bewegung der Big Mover von der durch-
schnittlichen Zentrenbewegung abweicht. Abbildungen bis setzen die
maximalen Zentrenbewegung mit der durchschnittlichen Zentrenbewegung in
Verhaltnis. Wahrend sich das Verhaltnis bei £ = 16 im einstelligen Bereich be-
findet, bewegen sich Big Mover, unabhéngig von der Gréfle und Dimension des
Datensatzes, bei groleren Clusterzahlen deutlich starker als das durchschnittli-
che Clusterzentrum. Wenn man nur die Bewegung der aktiven Clusterzentren
in Verhéltnis zu der maximalen Zentrenbewegung setzt, also eine Bewegung
von 0 unberticksichtigt lasst, dann weicht die Bewegung der Big Mover weniger
stark von denen eines durchschnittlichen Clusterzentrums ab (Abbildungen [6.19]
bis , bleibt in einigen Fallen aber weiterhin im mittleren zweistelligen

8Alle Zentren besitzen zueinander genau die durchschnittliche Center-Center-Distanz. Das
derzeit zugeordnete Clusterzentrum bewegt sich nicht, wodurch die obere Schranke
unveréndert bleibt.

93

Kapitel 6. Empirische Untersuchung

Bereich (Abbildung |6.21b)). Diese Beobachtungen ist konsistent zu den zuvor
betrachteten Ranglisten der Algorithmenvarianten. Fiir Datensétze bei denen

der Hamerly fiir kleine k& niedrigere Range erreicht hat, sinkt der Rang mit
zunehmendem & ab (Abbildungen [6.1] und [6.2] auf Seite [85)).

10% |) 10° f f
‘ ‘ ‘ e
0 100 200 0 20 100
(a) k=16 (b) k = 96

Abbildung 6.14.: Durchschnittlicher Zentrenabstand geteilt durch maximale Zen-
trenbewegung abhédngig von der Iteration im birch-Datensatz.

104 T 3 T T
10° £ E
9
10% | 0t
2 10"}
100 L | | | | | 100 ; | | | \;
0 20 40 60 80 0 100 200 300

(a) k=16 (b) k = 96

Abbildung 6.15.: Durchschnittlicher Zentrenabstand geteilt durch maximale Zen-
trenbewegung abhéngig von der Iteration im mnist784-Datensatz.

94

6.3. Beurteilung

h 60
40

20 |

S N B~ O
T

| |
0 100 200
(a) k=16

Abbildung 6.16.: Maximale Zentrenbewegungen geteilt durch die durchschnittliche
Zentrenbewegung abhéngig von der Iteration im birch-Datensatz.

10 - ‘ T ol .
40 | :
5 [|
20 | |
0 L | | | | | | O L "' | | \7
0 20 40 60 80 0 100 200 300
(a) k = 16 (b) k = 96

Abbildung 6.17.: Maximale Zentrenbewegungen geteilt durch die durchschnittli-
che Zentrenbewegung abhéngig von der Iteration im mnist784-
Datensatz.

T T 80 [T

10 60| 1
’ «\ | 40 |+ I, s

5| e

| 20 | :

0 ! ! ! ! \‘ | 0f ! ! |
0 20 40 60 80 0 50 100

(a) k =16 (b) k = 96

Abbildung 6.18.: Maximale Zentrenbewegungen geteilt durch die durchschnittli-
che Zentrenbewegung abhéngig von der Iteration im uscensus-
Datensatz.

95

Kapitel 6. Empirische Untersuchung

67 T] T
20 | |
4, |
5| | 10| .
07\ | | | 07 |
0 100 200
(a) k=16 (b) k = 96

Abbildung 6.19.: Maximale Zentrenbewegungen geteilt durch die durchschnittliche
Zentrenbewegung aktiver Cluster abhéngig von der Iteration im
birch-Datensatz.

15]
6 [|
.l | 10 |
2 :)
0 L | | | ‘ | | | O L | | | |
0 20 40 60 &0 0 100 200 300
(a) k=16 (b) k=96

Abbildung 6.20.: Maximale Zentrenbewegungen geteilt durch die durchschnittliche
Zentrenbewegung aktiver Cluster abhingig von der Iteration im
mnist784-Datensatz.

S N = O
T

| | | \‘
0 20 40 60 &80 0 50 100
(a) k=16 (b) k=96

Abbildung 6.21.: Maximale Zentrenbewegungen geteilt durch die durchschnittliche
Zentrenbewegung aktiver Cluster abhingig von der Iteration im
uscensus-Datensatz.

96

6.3. Beurteilung

6.3.3. Analyse der Algorithmen

Nachdem im Vergleich der Algorithmen untersucht wurde, wie gut die Leistung
der einzelnen Algorithmen im Vergleich zu anderen Algorithmen ist, mochten
wir in diesem Abschnitt untersuchen, warum die Algorithmen diese Ergebnisse
erreichen und welche Parameter die Leistung der Algorithmen beeinflussen.
Ein besonderer Fokus soll dabei auf die Alleinstellungsmerkmale der einzelnen

Algorithmen gesetzt werden.

Elkan

Die Funktionsweise, Vor- und Nachteile des Elkan sind Grundlage bei der
Entwicklung der anderen Algorithmen gewesen, wodurch dieser kein Allein-
stellungsmerkmal besitzt. Aus diesem Grund soll die Leistung der einzelnen
Pruningkriterien und insbesondere die Unterschiede der Pruningleistung zwi-
schen dem regularen Elkan mit Pruningkriterium |2/ und dem Simplified Elkan
ohne Einsatz von Pruningkriterium 2| untersucht werden.

Bereits in dem zuvor erfolgten Vergleich der Algorithmenvarianten hat sich
herausgestellt, dass der reguldre Elkan im Vergleich zum Simplified Elkan
durch das zuséatzliche Pruningkriterium nicht in jedem Fall Distanzberechnun-
gen einsparen kann (Seite [76). Dies ist nicht ausschlieflich darin begriindet,
dass Pruningkriterium 2| fiir bestimmte Konstellationen aus Datensatz und
Clusteranzahl eine schlechte Leistung erbringt. Stattdessen ist es so, dass der
Simplified Elkan in der Lage ist, den Wegfall von Pruningkriterium [2 durch
eine bessere Leistung der unteren Schranke zum grofiten Teil zu kompensieren.

Abbildungen bis zeigen, dass der Verlaufsgraph fiir jeweils einen
beispielhaften Clusteringlauf mit unterschiedlichen Clusteranzahlen auf dem
mnist784- und dem uscensus-Datensatz fiir Elkan und Simplified Elkan nahezu
identisch ist. Auf der vertikalen Achse ist die Anzahl der eingesparten Distanz-
berechnungen gestapelt aufgetragen. Die Pruningkriterien werden nacheinander
abgepriift, ein erfolgreiches Pruning mit Hilfe eines fritheren Pruningkriteriums
fithrt dazu, dass ein spéteres Pruningkriterium nicht mehr abgepriift werden
muss. Unsere Implementierung des Elkan priift die Kriterien innerhalb der im
Diagramm aufgetragenen Reihenfolge. Insbesondere wird die untere Schranke
vor Pruningkriterium [2, aber nach der globalen Variante von Pruningkrite-
rium 2| iiberpriift. Auf diese Weise ergibt sich die Summe der eingesparten

Distanzberechnungen aus der Anzahl der eingesparten Distanzberechnungen der

97

Kapitel 6. Empirische Untersuchung

einzelnen Pruningkriterien. Die horizontale Linie am oberen Ende des Graphen
gibt die Anzahl der Distanzberechnungen des Lloyd und damit die maximal
einzusparende Anzahl an Distanzberechnungen an.

Fiir den uscensus mit 96 Clustern ist in Abbildung deutlich zu erkennen,
dass Pruningkriterium [2| fiir den reguldren Elkan deutlich mehr als die Halfte
der Pruningleistung erbringt. Wenn man aber die Differenz der kombinierten
Pruningleistung aller Pruningkriterien zwischen Simplified Elkan und reguldrem
Elkan betrachtet, dann liegt diese im Bereich von 0,1 %. Im Vergleich zum
reguldren Elkan vervierfacht sich die Pruningleistung der unteren Schranke fiir
den Simplified Elkan.

Der grofite und relevante Unterschied zwischen dem regularen Elkan und
dem Simplified Elkan befindet sich in der ersten Iteration. Innerhalb der
ersten Iteration sind noch keine unteren Schranken bekannt, ein Pruning
ist daher nur auf Basis der Center-Center-Distanzen méglichﬂ. Hier hat der
Simplified Elkan einen deutlichen Nachteil, der zum Teil in den folgenden
[terationen wieder ausgeglichen wird. Ein erfolgreiches Pruning fithrt dazu,
dass fiir diese Kombination aus Datenpunkt und Clusterzentrum keine untere
Schranke berechnet wird. Insbesondere fiihrt ein erfolgreiches Pruning mit
Hilfe von Pruningkriterium [2| in der ersten Iteration dazu, dass die untere
Schranke fiir diese Kombination aus Datenpunkt und Clusterzentrum auf dem
initialen Wert von 0 verbleibt. Wenn in der zweiten Iteration nicht erneut ein
Pruning mit Pruningkriterium [2| moglich ist, dann kann aus diesem Grund auch
nicht mit Hilfe der unteren Schranke gepruned werden. Der Simplified Elkan
musste innerhalb der ersten Iteration notwendigerweise alle unteren Schranken
berechnen. Aufgrund der feingranularen unteren Schranke ist ein Pruning in
der zweiten und folgenden Iterationen in der Regel moglich.

Eine notwendige Bedingung fiir die Ersparnis von Distanzberechnungen ist,
dass der regulére Elkan identische Paare aus Clusterzentrum und Datenpunkt
iiber alle Iterationen hinweg mit Hilfe von Pruningkriterium |2/ prunen kann.
Andernfalls verschiebt sich im Vergleich zum Simplified Elkan lediglich der
Zeitpunkt der erstmaligen Berechnung der unteren Schranke. Abbildung
zeigt als Gegenstiick zu Abbildung [6.27, dass der Grofiteil der unteren Schran-
ken fiir diese konkrete Initialisierung fiir den uscensus mit 96 Clustern nie

bendétigt wird. Von ungefahr 240 Millionen unteren Schranken werden 60 Mil-

9Und fiir die Datenpunkte, die als initiales Clusterzentrum gewihlt wurden, da die obere
Schranke fiir diese 0 betragt.

98

6.3. Beurteilung

0 ¢ /| ce
g, W CCy—tight

Abbildung 6.22.: Pruningkriterien im Vergleich fiir Elkan und Simplified Elkan
fiir mnist784 mit 16 Clustern.

10° 10°
4"] A" ;

|
50 100 150

| |
50 100 150

o
o

Abbildung 6.23.: Pruningkriterien im Vergleich fiir Elkan und Simplified Elkan
fiir mnist784 mit 64 Clustern.

10° 10°
6] 6 ;
4l : 4l -
2| : 2| -
07\ | | | 07\ | | i
0 50 100 0 5 100

Abbildung 6.24.: Pruningkriterien im Vergleich fiir Elkan und Simplified Elkan
fiir mnist784 mit 96 Clustern.

99

Kapitel 6. Empirische Untersuchung

107

1,5

0,5

Abbildung 6.26.:

20

30

107

fur uscensus mit 16 Clustern.

108

20

|
100

1,5

0,5

10

20

30

.t Pruningkriterien im Vergleich fiir Elkan und Simplified Elkan

108
T

fur uscensus mit 64 Clustern.

Abbildung 6.27.:

100

40

60

10%
T

50

|
100

Pruningkriterien im Vergleich fiir Elkan und Simplified Elkan

2,

fiir uscensus mit 96 Clustern.

20

40

60

80

Pruningkriterien im Vergleich fiir Elkan und Simplified Elkan

6.3. Beurteilung

108
24]
T
22| |
2 [|
18] .
[
| | | | |
0 20 40 60 80

Abbildung 6.28.: Anzahl der nie aktualisierten unteren Schranken des reguléren
Elkan fiir uscensus mit 96 Clustern.

lionen innerhalb der ersten Iteration initial gesetzt, da kein Pruning moglich
war. Weitere 3 Millionen werden innerhalb der zweiten Iteration gesetzt. Die
restlichen Iterationen bewirken nur geringe Anderungen an dieser Anzahl. Am
Ende verbleiben ungefdhr 170 Millionen untere Schranken, die auf dem initialen
Wert von 0 verbleiben, beziehungsweise durch die Bewegung der Clusterzentren
in den negativen Bereich angepasst werden. Dies deckt sich mit der Verteilung
der Pruningleistung in Abbildung

Die durch die gute Leistung von Pruningkriterium [2 nicht erfolgte Berech-
nung der unteren Schranke ist also ursdchlich an der scheinbar schlechten
Pruningleistung der unteren Schranke. Eine weitere Verbesserung der Leis-
tung von Pruningkriterium 2| wiirde die Leistung der unteren Schranke weiter

verringern.

Fiir den praktischen Einsatz bedeutet das also, dass zur Berechnung der
Center-Center-Distanzen zusétzliche Distanzberechnungen und zur Priifung
zusitzliche Verzweigungen erfolgen, nur um das Pruning von einem Pruningkri-
terium auf ein anderes zu verschieben. Insbesondere die groflere Anzahl an
Verzweigungen hat einen negativen Einfluss auf die benotigte Realzeit. Ein
Test mit dem bereits zuvor betrachteten beispielhaften Clustering des uscensus

in 96 Cluster zeigt, dass der Simplified Elkan zwar 5% mehr Instruktionen

101

13

15
16
17
18

20
21

Kapitel 6. Empirische Untersuchung

ausfithrt und 10% mehr Verzweigungen iiberpriifen mus{', die Anzahl der
falsch vorhergesagten Verzweigungen durch die Sprungvorhersage sinkt aber
auf weniger als die Hélfte (Listing . Das fiithrt zu einer besseren Auslastung
der da mehr Instruktionen pro Taktzyklus ausgefithrt werden konnen.
Trotz der héheren Anzahl an ausgefithrten Instruktionen kommt es dadurch zu

einer reduzierten Anzahl von Taktzyklen und somit reduzierten Realzeit.

Performance counter stats for 'target/kmeans_ELKAN_KMEANSPP_rolling Ascii ../
datasets/target/uscensus.txt 96 1':

[...1
847,758,833,256 cycles # 2.904 GHz (83.33%)
[...1

1,778,210,811,027 instructions # 2.10 insns per cycle
0.12 stalled cycles per insn (83.35%)
280,317,574,653 Dbranches # 960.226 M/sec (83.33%)
3,697,319,986 branch-misses # 1.32% of all branches (83.33%)

[...1

Performance counter stats for 'target/kmeans_ELKAN_KMEANSPP_rolling_simplified
Ascii ../datasets/target/uscensus.txt 96 1':

[...]

783,348,635,0563 cycles # 2.915 GHz (83.34%)

[...]
1,871,025,410,795 instructions # 2.39 1insns per cycle
0.10 stalled cycles per insn (83.34%)
309,145,314,405 branches # 1150.346 M/sec (83.34%)
1,584,765,985 branch-misses # 0.51% of all branches (83.33%)

[...1
Listing 6.5: Sprungvorhersage im Vergleich zwischen Elkan und Simplified Elkan

Drake

Besonderes Merkmal des Drake ist die variable Anzahl von unteren Schranken.
Diese sollen im Verlauf des Algorithmus reduziert werden konnen, um Rechenzeit
einzusparen. In der Praxis funktioniert dies auf den verwendeten Datensitzen
mit den verwendeten Clusteranzahlen allerdings nicht. Wenn eine Anpassung der
Schrankenanzahl erfolgt, dann erfolgt diese nahezu immer innerhalb der ersten
10 % des Clusterings auf den minimalen Wert % (Abbildung . Eine weitere
Héaufung der Anpassungen befindet sich kurz vor Abschluss des Clusterings.
Am weitaus haufigsten erfolgt aber iiberhaupt keine Anpassung der Anzahl der
Schranken. Die Heatmap in Abbildung zeigt, dass fiir den Grofteil der

0Vermutlich bedingt durch die Priifung in Zeile 4 von Algorithmus die das Betreten
der Schleife iiber alle Clusterzentren fiir einen Datenpunkt vermeidet.

102

6.3. Beurteilung

0,25 |

b/k

0,15+

0 02 04 06 0,8 1
Fortschritt

Abbildung 6.29.: Verlauf des Anteils % der genutzten Schranken b im Drake als
Ubersicht aller Datensitze, Clusteranzahlen und Seeds.

T T T T T T
0,25 | o | 102°
2
eooe 10
. 0,2 i 105
~ @@ OO e @ O G O @
o)
°
L I @ @ (@@ @@ @ @iy 10!
o
0,15} e |
©eIO0 000 000 000 000 000 000 000 000 ©
1005
Hafadadaadacacaadadadaacadad
10°

—_

02 04 06 08
Fortschritt

o

Abbildung 6.30.: Heatmap des Anteils % der genutzten Schranken b im Drake als
Ubersicht aller Datensétze, Clusteranzahlen und Seeds.

103

Kapitel 6. Empirische Untersuchung

k

7 nicht oder erst kurz vor Abschluss des Clusterings

Laufe der Startwert von
verlassen wird.

In vielen Féllen verhindern einzelne Datenpunkte dadurch, dass fiir diese kein
Pruning moglich ist, eine Anpassung der Schrankenanzahl. Beispielhaft haben
rund 4,96 - 107° % der Datenpunkte fiir ein Clustering des uscensus-Datensatzes
in 96 Cluster'!| bis zuletzt verhindert, dass die Anzahl der Schranken reduziert
werden konnte. Nach der Halfte der Iterationen war fiir diesen konkreten
Clusteringlauf fir rund 99 % der Datenpunkte eine Schranke ausreichend, um
ein Pruning zu ermoglichen.

Das andere Extrem tritt beim Clustering von niedrigdimensionalen Daten-
sitzen in viele Cluster, beispielhaft dem birch in 1024 Clusteﬂ?], auf. Nach
der zweiten Iteration war die maximale Anzahl bendtigter Schranken fiir kei-

nen Datenpunkt grofler als 10. Die Anzahl der Schranken wurde daher auf

1024
8

diesem Wert. 110 Schranken wurden unnétig weiterhin aktualisiert und es muss

= 128 reduziert und verblieb fur die verbleibenden 70 Iterationen auf

Hauptspeicher fiir den maximalen Speicherbedarf von 256 initialen Schranken
bereitgestellt werden.

Dadurch, dass die Bestimmung der Anzahl der genutzten Schranken sehr
leichtgewichtig implementiert werden kann, kommt es fiir Clusteringlaufe, in
denen keine Reduktion stattfinden kann, zu keiner relevanten Erhohung der
benotigten Realzeit. Wenn eine Reduktion der Anzahl der Schranken stattfinden
kann, dann kann die fir die Aktualisierung der Schranken bendétigte Zeit
potentiell halbiert werden. Im Vergleich zu der bendtigten Zeit fiir die restlichen
Berechnungen ist aber auch dies zu vernachléssigen.

Zusammenfassend lasst sich sagen, dass eine Anpassung der Anzahl der
unteren Schranken nicht schadlich ist, in der Praxis aber auch keine deutlich
sptrbaren Vorteile bringt. Der Drake erreicht seine Leistung vielmehr durch
die im Vergleich zum Elkan reduzierte Anzahl von Schranken, nicht durch die

dynamische Anpassung der Anzahl dieser bereits reduzierten Anzahl.

Hgeed = 2
2geed = 1

104

6.3. Beurteilung

Annulus

Der Annulus ist bei unseren Tests der Algorithmus mit der grofiten Anzahl
an Varianten gewesen. Eine Stellschraube ist die mogliche Deaktivierung der
bindren Suche. Dies ist nicht sinnvoll. Die Deaktivierung der bindren Suche ist,
abgesehen von einzelnen Ausnahmen, nur fiir 16 Cluster und zum Clustering des
mnist784-Datensatzes schneller gewesen. Fiir 16 Cluster ist die Verbesserung
aber unter 5 % fiir eine ohnehin schon kleine Realzeit. Im Falle des mnist784
erreicht Pruningkriterium [3| generell nur eine geringe Leistung, der weitaus
groBite Teil der Clusterzentren liegt auf dem Annulus. Nach der bindren Suche
muss daher trotzdem tiber alle Clusterzentren iteriert werden, genau so, wie es

bei der linearen Suche der Fall wére.

Die zweite annulusspezifische Stellschraube ist die Auswahl des Fixpunkts.
Die Auswahl des Fixpunkts als Schwerpunkt aller Datenpunkte benotigt mit
Ausnahme des colormoments-Datensatzes mehr Distanzberechnungen, als die
Auswahl des Fixpunkts im Ursprung. In Féllen, in denen die Auswahl der
bendtigten Distanzberechnungen gesunken ist, betragt der Unterschied weniger
als 2%. Wenn sich der Schwerpunkt im Fixpunkt befindet, dann befinden sich
Datenpunkte und somit Clusterzentren in allen 4 Quadranten. Entsprechend
deckt der Annulus hier eine deutlich groBere Flache, in der sich potentiell

Clusterzentren befinden kénnen, ab.

Den Fixpunkt hingegen als das komponentenweise Minimum aller Daten-
punkte zu wahlen, bringt grofie Leistungsunterschiede sowohl in die positive als
auch in die negative Richtung. Beim Clustering von colormoments und covtype
konnten bis zu 25 % der Distanzberechnungen eingespart werden. Fiir diese
beiden Datensatze war der Fixpunkt im Minimum in keinem Fall schlechter als
der Fixpunkt im Ursprung. Beim colormoments befinden sich die Datenpunkte
relativ gleichméfig um den Ursprung verteilt und alle Komponenten besitzen
eine dhnliche Standardabweichung. Dies entspricht der Situation bei der Aus-
wahl des Fixpunkts im Schwerpunkt aller Datenpunkte, die wie oben diskutiert,
eine schlechte Leistung bringt. Entsprechend verbessert sich die Leistung bei

Anderung der Position des Fixpunkts.

Fiir birch, housel6h, mnist784 und sl sind die Unterschiede zu vernachléssi-
gen, fiir viele Komponenten ist das Minimum hier nahe bei 0, sodass sich die

Position des Fixpunkts nur marginal dndert.

105

Kapitel 6. Empirische Untersuchung

Fir den kddcup04, conflongdemo und uscensus wurden bis zu 20 % mehr
Distanzberechnungen benotigt. Die Leistungsabnahme beim uscensus ist hier
von besonderem Interesse. Nur zwei der 68 Komponenten haben ein Minimum
das nicht 0 ist. Komponente 3 bewegt sich ganzzahlig im Bereich von 1 bis 12.
70 % der Datensétze haben dort das Minimum 1. Komponente 50 bewegt sich mit
Liicken ganzzahlig im Bereich von 10 bis 52. 63 % der Datensétze haben dort das
Minimum 10. Es ware daher anzunehmen, dass der Einfluss durch die geanderte
Position des Fixpunkts nur gering ist. Ursdchlich an der deutlichen Abnahme
der Leistung ist die Verschiebung des Fixpunkts in der 50. Komponente. Diese
besitzt mit 11,56 die zweitgrofite Standardabweichung aller Komponenten und
ist fiir einen beispielhaften Lauf mit 96 Clustern eine der beiden Komponenten,
deren Standardabweichung grofler als die durchschnittliche obere Schranke
(~ 5,94) ist.

Die Leistung der einzelnen Pruningkriterien dieses beispielhaften Laufs ist in
Abbildung fiir die zwei Positionen des Fixpunkts im Annulus und fiir den
Exponion dargestellt. Analog zu der Analyse des Elkan sind auf der vertikalen
Achse die Anzahl der eingesparten Distanzberechnungen gestapelt aufgetragen.
Da sowohl die untere Schranke als auch Pruningkriterium 2| global arbeiten,
erfasst unsere Implementierung ebenfalls die Anzahl der Distanzen, bei denen
beide Pruningkriterien ein Pruning erlauben (cc +). Die Werte fir cc + 1, cc
und [entsprechen der Pruningleistung des Hamerly und sind in allen Varianten
identisch. Das zusétzliche Pruningkriterium des Annulus und des Exponion
kommt nur dann zum Einsatz, wenn diese nicht erfolgreichen prunen koénnen.
Unabhéngig von der Leistung dieses zusatzlichen Pruningkriteriums werden
die obere und untere Schranke identisch zum Hamerly aktualisiert. Es wird
deutlich, dass die grofite Pruningleistung durch die unteren Schranken erreicht
wird. Diese dominieren daher die Form des Graphen. Abbildung zeigt
die Leistung des jeweils zusatzlichen Pruningkriteriums daher noch einmal
im direkten Vergleich. Der Exponion erreicht die beste Leistung, gefolgt von
dem Fixpunkt im Ursprung. Der Fixpunkt als komponentenweises Minimum

erreicht, wie zuvor diskutiert, die schlechteste Leistung.

Der Grund in der Leistungsabnahme bei Verschiebung des Fixpunkts zum
Minimum aller Komponenten besteht darin, dass fir einen Datenpunkt die
durch den Annulus abgedeckte Fliche beginnend an diesem Datenpunkt entlang

einer Dimension zunimmt je naher der Fixpunkt dem Wert des Datenpunkts in

106

108
2, |
1, |
us |]
0 50 100

ce+l e 1] mmmnorm

(a) Fixpunkt im Ursprung

108

O, N

0 50 100

o ce+l e o | mmm cc-eXp

(c) Exponion

6.3. Beurteilung

108
2, |
1, _
O |]
0 50 100

i cc+l e] mmmnorm

(b) Fixpunkt als Minimum aller Kom-

ponenten
108
1 - .
0,5} .
O |]
0 50 100

1 Urspr I Min——1 Exp

(d) Vergleich der Leistung des zusétz-

lichen Pruningkriteriums.

Abbildung 6.31.: Einfluss der Position des Fixpunkts auf die Pruningleistung fiir
einen Clusteringlauf auf dem uscensus-Datensatz mit 96 Clustern.

107

Kapitel 6. Empirische Untersuchung

Abbildung 6.32.: Ansteigende Fliche im Annulus je ndher der Fixpunkt auf der
X-Achse dem Punkt p kommt.

dieser Dimension kommt. Umgekehrt nimmt die abgedeckte Flache der anderen
Dimensionen ab. Abbildung zeigt dies beispielhaft. Der kleinste Wert fiir
die horizontale Achse im Datensatz betrdgt 10 (analog zur Komponente 50
des uscensus) und wird représentiert durch den Datenpunkt p. Je naher der
Fixpunkt o, auf der horizontalen Achse dem Wert 10 kommt, desto grofler ist
die durch den Annulus abgedeckte Fléche in horizontaler Richtung fiir Werte
beginnend bei 10.

Im konkreten Fall des uscensus-Datensatzes fithrt dies dazu, dass die abge-
deckte Fliche entlang einer Komponente mit grofler Varianz und Spannweite
zunimmt, wahrend die abgedeckte Flache entlang der Komponenten mit kleiner
Varianz und Spannweite abnimmt. Insbesondere ist die Spannweite der meisten
Komponenten durch die obere Schranke nahezu vollstindig abgedeckt, sodass
unabhéngig von der Position des Fixpunkts der Grofiteil der Werte dieser
Komponenten auf dem Annulus liegt. Dies fithrt dazu, dass durch den Annulus
auf der entscheidenen Komponente 50 eine grofiere Fliche abgedeckt wird. Als
direkte Folge davon nimmt die Leistung von Pruningkriterium |3| ab.

Eine Verschiebung des Fixpunkts zur Verbesserung der Pruningleistung miiss-
te also auch Varianz und Spannweite der einzelnen Dimensionen in Verbindung
mit der durchschnittlichen oberen Schranke beziehungsweise der Durchmesser
der natiirlichen Cluster berticksichtigen, um konsistent eine verbesserte Leis-
tung zu erbringen. Der durchschnittliche Betrag der oberen Schranke und die

Durchmesser der natiirlichen Cluster stehen a priori allerdings nicht zur Verfii-

108

6.3. Beurteilung

gung, sodass diese nicht in die Auswahl der Position des Fixpunkts einfliefen
konnen. Eine statistische Standardisierung der Werte aller Dimensionen auf
den Mittelwert 0 mit Varianz 1 wiirde dieses Problem umgehen. Diese kommt
aber, obwohl die Standardisierung reversibel ist, zu anderen Ergebnissen. Ein
Clustering auf Basis standardisierter Werte ist somit kein exaktes Clustering

im Sinne von Definition

109

Fazit und Ausblick

Im Rahmen dieser Arbeit iiber exakte, durch Schranken beschleunigte k-means-
Clustering-Verfahren haben wir neben dem unbeschleunigten Lloyd-Algorithmus
sechs Algorithmen der k-means-Familie vergleichend untersucht.

Untersuchungen der k-means-Familie in bestehender Literatur vergleichen
die Leistung der unterschiedlichen Algorithmenvarianten anhand von extern
gemessenen Daten, wie beispielsweise die bendtigte Real- oder CPU-Zeit und
dem benétigten Speicherverbrauch. Bei der Entwicklung neuer Algorithmen-
varianten wird zum Teil begriindet, warum die Neuentwicklung besser als ein
bestehender Algorithmus sein soll, diese Verbesserung und Herangehensweise
aber nicht anhand von Messdaten innerhalb des Algorithmus, sondern nur
anhand der vorgenannten externen Messdaten belegt.

Ziel dieser Arbeit war es daher, systematisch zu untersuchen, welchen Einfluss
die einzelnen Eingabeparameter, wie beispielsweise die Grofie und Beschaffenheit
des Datensatzes und die Anzahl der gewiinschten Cluster, auf die Clustering-
leistung der unterschiedlichen Algorithmen und Algorithmenvarianten haben
und insbesondere, warum die einzelnen Algorithmenvarianten unterschiedlich
durch diese Parameter beeinflusst werden.

Unsere Untersuchung besteht dabei aus zwei Teilen. Im ersten Teil wur-
den sechs Algorithmen aus bestehender Literatur auf Gemeinsamkeiten und
Unterschiede untersucht, wiederverwendete Einzelkomponenten, die an der Be-
schleunigung beteiligt sind, extrahiert und die Funktionsweise auf theoretischer
Basis untersucht. Dabei wurden in den Algorithmen eine obere Schranke, drei
Arten von unteren Schranken und zwei Arten von ergdnzenden Metadaten
identifiziert, die es mit Hilfe der Dreiecksungleichung erlauben, Aussagen iiber
die Distanzen zwischen Datenpunkten und Clusterzentren zu treffen. Mit Kom-
bination einer Art von unterer Schranke und einer Menge der erginzenden
Metadaten lassen sich alle Pruningkriterien in den untersuchten Algorithmen

abbilden. Die erganzenden Metadaten werden auf unterschiedliche Art und

111

Kapitel 7. Fazit und Ausblick

Weise in den Algorithmen genutzt. Algorithmen, die die gleichen Daten vor-
halten, unterscheiden sich teilweise nur in der Bedingung, die zur Priifung des
moglichen Prunings genutzt wird. Die genaue Funktionsweise der einzelnen
Pruningkriterien und die Zusammensetzung zu einem vollstdndigen Algorith-
mus wurden im Detail vorgestellt. Der Ablauf des Zuweisungsschritts fiir einen
einzelnen Punkt wurde fiir alle Algorithmen mit Hilfe von Pseudocode in kon-
kreter Form dargestellt. Basis dieses Pseudocodes ist die Beschreibung des
Algorithmus innerhalb der Originalverdffentlichung, um sicherzustellen, dass
alle Pruningkriterien in der korrekten Reihenfolge tiberpriift werden. Ein erfolg-
reiches Pruning fithrt dazu, dass spatere Pruningkriterien nicht mehr tiberpriift
werden. Bei der Entwicklung dieses Pseudocodes wurde Wert darauf gelegt,
dass identische Abldufe und Bedingungen im Pseudocode in allen zutreffenden
Algorithmen in identischer Form umgesetzt wurden. Dabei stellt sich heraus,
dass sich das Pruning in den verschiedenen Algorithmen zum Teil nur durch die
Ergénzung einzelner Anweisungen unterscheidet. Details der Originalveroffent-
lichung, die im Sinne der Lesbarkeit nicht sinnvoll als Pseudocode abgebildet

werden konnten, wurden textuell erklart.

Im zweiten Teil wurden die zuvor vorgestellten Algorithmen in C++ auf
Basis der ohne Verwendung externer Abhédngigkeiten implementiert. Basis
der Implementierung ist der im ersten Teil entwickelte Pseudocode in Ver-
bindung mit den textuell beschriebenen Details. Der C++-Programmcode ist
moglichst nah am Pseudocode orientiert. Insbesondere die Struktur der Kon-
trollstrukturen findet sich identisch in Pseudocode und C++-Programmecode.
Falls die Beschreibung des Algorithmus in der Originalveré6ffentlichung Raum
fir Interpretationen lieff wurden mehrere Varianten des Algorithmus imple-
mentiert. Auf gleiche Weise wurden mehrere Varianten implementiert, wenn
durch geringfiigige Anpassungen, die den Ablauf nicht wesentlich verandern,
ein anderes Laufzeitverhalten zu erwarten war. Als letzte Form der Variante
wurden Techniken zur Verbesserung der Leistung, die den Ablauf des Zuwei-
sungsschritts nicht verandern, fiir alle Algorithmen implementiert, auch wenn

diese nicht Bestandteil der Originalveroffentlichung waren.
Der Exponion konnte nicht vollstindig gemafl der Originalveroffentlichung

implementiert werden, der Einsatz der bindren Suche fehlt. Die Funktionsweise

dieser binaren Suche wurde zwar textuell beschrieben, es ist allerdings offen

112

geblieben, wie die partielle Sortierung der Center-Center-Distanzen fiir die

bindre Suche in der geforderten Komplexitatsklasse erfolgen soll.

Durch diese strukturierte Herangehensweise wurde sichergestellt, dass kein
Algorithmus durch seine Implementierung gegeniiber anderen Algorithmen

bevorteilt und die Ergebnisse dadurch verfalscht wurden.

Der so entwickelte Programmcode wurde an einer Vielzahl von Stellen um
die Erhebung von Messdaten erweitert. Eine nicht abschlieBende Aufziahlung
dieser Messdaten inkludiert die Haufigkeit des Prunings mit Hilfe der einzel-
nen Pruningkriterien, die Anzahl der Distanzberechnungen und die benotigte
Realzeit pro Iteration. Diese Messdaten wurden fiir alle Algorithmenvarianten
fiir unterschiedliche Datensatze, Clusteranzahlen und Initialisierungen erhoben
und anschlieend ausgewertet. Ein Vergleich der Algorithmenvarianten mit
Realzeit und der Anzahl der durchgefiithrten Distanzberechnungen als Leis-
tungsmerkmal konnte die Erkenntnisse bestehender Literatur im Wesentlichen
bestétigen. Fiir den Einsatz mit vielen Dimensionen empfiehlt sich die Verwen-
dung des Elkan, fiir den Einsatz in niedrigen Dimensionen die Verwendung
einer Hamerly-Variante. Der Yinyang erreicht mit zunehmender Anzahl an
Clustern eine bessere Leistung. Auffélligkeiten in diesem Vergleich der externen
Messdaten wurden als Basis fiir die Untersuchung der internen Messdaten

genutzt.

Als Vorbereitung fir die Untersuchung der internen Messdaten haben wir die
Bewegungen der Clusterzentren in den verwendeten Datensédtzen untersucht.
Da alle untersuchten Algorithmen exakte Algorithmen sind, bewegen sich die
Clusterzentren fiir alle Algorithmen auf identische Weise. Dabei konnten wir
feststellen, dass die maximale Bewegung einzelner Clusterzentren mit zuneh-
mender Anzahl von Clustern zunehmend starker von der durchschnittlichen
Zentrenbewegung abweicht. Derartige Big Mover sorgen bei Algorithmen ohne

feingranulare untere Schranke fiir eine schlechte Pruningleistung.

Bei der abschlieenden Betrachtung der internen Messdaten konnte iiber die
Analyse der Pruningleistung der einzelnen Pruningkriterien in Abhéngigkeit
von der Iteration fiir den Elkan festgestellt werden, dass weniger mehr ist und
warum weniger mehr ist. Der Simplified Elkan, der im Vergleich zum Elkan
auf ein Pruningkriterium verzichtet, kann in der Praxis eine bessere Leistung

erzielen.

113

Kapitel 7. Fazit und Ausblick

Fir den Drake stellt sich heraus, dass das ,,adaptive Tuning* der Schranken-
anzahl in der Praxis auf den von uns verwendeten Datensédtzen in der Regel

nicht sinnvoll funktioniert, aber auch keine Nachteile bietet.

Der Annulus erlaubte die Implementierung einer grofen Anzahl von Varian-
ten. Fiir die Auswertung von besonderem Interesse und in der uns vorliegenden
Literatur bislang noch vollig unberticksichtigt war die Verschiebung des ver-
wendeten Fixpunkts. Eine Verschiebung innerhalb einer einzelnen Dimension
sorgt fur bis zu 25 % Differenz in der Pruningleistung des Annulus. Wir haben
die Ursache fiir diesen grofien Einfluss der Position des Fixpunkts auf die Pru-
ningleistung im Detail untersucht. Eine deutlich abweichende Beschaffenheit
dieser einzelnen Dimension im Vergleich zu allen Dimensionen fiihrt dazu, dass
durch die Verschiebung des Fixpunkts weniger Clusterzentren gepruned werden

konnen.

In dieser Untersuchung der internen Messdaten nicht berticksichtigt wurden
Hamerly, Exponion und Yinyang. Fir den Hamerly hat sich bereits bei dem
direkten Vergleich der Algorithmen herausgestellt, dass dieser als echte Teil-
menge des Annulus und Exponion in praktisch allen Fallen eine schlechtere
Leistung als selbige erbringt. Dariiber hinaus treffen Leistungsmerkmale des
Hamerly identisch auf Annulus und Exponion zu. Im Falle des Exponion zeigte
der direkte Vergleich keine Auffélligkeiten, die als Startpunkt fiir die detaillierte
Untersuchung genutzt werden konnten. Die Leistung des Exponion entsprach
im Wesentlichen der Erwartung. In Bezug auf die Realzeit sorgte die fehlen-
de bindre Suche fiir eine schlechte Leistung und damit eine Verfilschung des
Ergebnisses. Der Yinyang erreichte bei dem direkten Vergleich der Algorith-
men mit zunehmenden k eine bessere relative Leistung. Die Auswertung der
internen Messdaten lieferte aber keine eindeutigen Ergebnisse fiir den Grund
dieser Leistungszunahme. Es konnte auch nicht klar festgestellt werden, ob die
Leistung des Yinyang zunimmt oder ob die Leistung der anderen Algorithmen

abnimmt.

Im Rahmen dieser Arbeit haben wir durch die systematische Herangehens-
weise in Bezug auf die Untersuchung von Algorithmen der k-means-Familie und
der daraus resultierenden praktischen Implementierung ein stabiles und faires
Grundgeriist zur Erfassung von Messdaten wiahrend des Clusterings geschaffen.
Dadurch konnten wir bestehende Erkenntnisse einerseits bestatigen und auf

der anderen Seite konnten wir die Griinde fiir das Verhalten der Algorithmen

114

anhand der erfassten Messdaten ermitteln und klar belegen. Fiir den Exponion
und den Yinyang sind noch Fragen offen geblieben. Diese sollten im Rahmen
zukiinftiger Forschung auf Basis des von uns entwickelten Grundgertists, das
um die Erfassung weiterer Messdaten erweitert wird, geklart werden.

Eine Einschrénkung unserer Resultate ist die durch die Bearbeitungszeit be-
schrankte geringe Anzahl an unterschiedlichen Initialisierungen mit k-means-++-.
Ein Clustering aller Datensétze mit allen Algorithmenvarianten fir die gewéhl-
ten Clusteranzahlen benétigt fiir jeweils einen k-means++-Seed tiber 24 Stun-
den. Durch Fehler in der Implementierung, die erst durch die Auswertung
aufgefallen sind, und durch Erweiterung der erfassten Messdaten im Rahmen
der Auswertung ist mehrfach ein erneutes Clustering erforderlich gewesen, um
korrekte und konsistente Resultate zu gewahrleisten. Auf gleiche Weise ist
die maximale Anzahl von Clustern mit 96 relativ gering gewéhlt. Fiir grofiere
Clusteranzahlen ware bei den grofieren Datensétzen fiir die schwergewichtigeren
Algorithmenvarianten mehr Hauptspeicher erforderlich gewesen. Das benétigte
finanzielle Budget fiir die genutzte Cloud-Hardware héatte sich dadurch ver-
doppelt. Eine Beurteilung, ob die beobachteten Trends, wie beispielsweise die
Leistungszunahme des Yinyang, sich fiir groflere k fortsetzen, ist daher nicht
abschliefend moglich gewesen.

Den Einfluss der Position des Fixpunkts auf die Pruningleistung des Annulus
konnten wir belegen und die Ursache dahinter ermitteln. Es konnte im Rahmen
dieser Arbeit aber kein Verfahren entwickelt werden, wie auf Basis des genutzten
Datensatzes die Position des Fixpunkts so gewédhlt werden kann, dass sich die
Leistung des Annulus gegeniiber einer Position im Ursprung im Regelfall
verbessert.

Es wird deutlich, dass die Moglichkeiten der Beschleunigung von k-means-
Clustering durch exakte, schrankenbasierte Algorithmen noch nicht ausgeschopft
sind. Diese Arbeit konnte aufgrund ihres Fokus und der zur Verfiigung ste-
henden Ressourcen nicht alle Fragen abschlieSend klédren, liefert aber einen

entscheidenden Beitrag fiir zukiinftige Forschung in diesem Bereich.

115

N O Ot e W N

S T s W N

Datensatze

Eine besondere Schwierigkeit, die sich bei der Uberpriifung der Resultate von
anderen Veroffentlichungen ergibt, ist, dass Testdaten und / oder die eingesetzen
Programme nicht zur Verfiigung stehen. An dieser Stelle finden sich daher die
Quellen der verwendeten Datensatze und ihre kryptografischen Priifsummen.
Es kann so leicht iiberpriift werden, ob der identische Datensatz vorliegt. Falls
eine Quelle zukiinftig nicht mehr zur Verfiigung steht, kann ein Datensatz mit
Hilfe der Priifsumme moglicherweise auch iiber Magnet-Links fiir BitTorrent
oder das InterPlanetary File System bezogen werden.

birch
http://cs.joensuu.fi/sipu/datasets/ |[FS1§]

MD5 (birchl.txt) = 98a199d85ad4fc3caed437008712a294

SHA1 (birchl.txt) = 486d2fObecdc6265f0c91cf26f52ef3ab0241a0f
SHA256 (birchl.txt) = 95230d302b2ffbel5de77£732af7002b037887
c30c19b1539999dedfe3587400

SHA512 (birchl.txt) = 9db82d02d0771c3c7b922f4320215f26a81d77
d5ea05a7e19ad8d0d0e832f11937£66186d0a7cc898e5813764522d45842
717b543d35f53aedfab014a3f083c8

colormoments

https://archive.ics.uci.edu/ml/datasets/corel+image+features [DG17]

MD5 (ColorMoments.asc) = 8c05f6e9e4al5baal07d61ab736dfdd07
SHA1 (ColorMoments.asc) = cdf1b9a8ba5bbb30d1954b7b104f84dbdf
0b7870

SHA256 (ColorMoments.asc) = 4353b76cd32d4e52617e287£f05e0cf72
b6d3df£58542af55ec36a5300ecbf07d

SHA512 (ColorMoments.asc) = afbef12d829193003cfe57d74cb855d5

117

© 00 N O U W N

0 N O O e W N

N O O e W

Anhang A. Datensétze

76b0464bdfe78eab650bf57531454bf54c0752fe082be874a2899d8072b0e
013e2879ee2e58555989250al1c3calbc3e8e

conflongdemo

http://cs.joensuu.fi/sipu/datasets/ [FS1§]

MD5 (ConfLongDemo_JSI_164860.txt) = 4adae4725b198b7b2cf5b052
73821fab

SHA1 (ConfLongDemo_JSI_164860.txt) = 5edd02bd3956fc23331e388
2clc2ec7b996e02ce

SHA256 (ConflLongDemo_JSI_164860.txt) = 75628aef681b9cdcflabc
08a392abf094d374e779b8d5566c4a8ebe064£52b37

SHA512 (ConfLongDemo_JSI_164860.txt) = cccc7147ddd1d0ed4d18e
6117ec257cfellec7561aaed81c05bb62485d2973f8afea3c704d21bbedl
291a4d8dc324abae30b8f9a7e1d7e62a4a6a00642164213

covtype

http://archive.ics.uci.edu/ml/datasets/covertype [DG17|

MD5 (covtype.data) = 71df19898bd3elldbl5ae0faf4159f2c

SHA1 (covtype.data) = 701£f84a08505d5aea6870e48294585f6c7326a
f1

SHA256 (covtype.data) = 0a9371cef7c964b5475d6053cc3e0894abaa
6f65adled3ecb01c452a96217945

SHA512 (covtype.data) = 4e77e1705c2040512ade4456bcb5422a2e00
b7a6ad2abc324a72a249d7a174a32a09368c76faee951ecd983871d17b0a
7e198654257d2ebad4db42cad9bd1£f2£f7

housel6h

http://funapp.cs.bilkent.edu.tr/DataSets/

MD5 (HH.dat) = c0d06d7e29bb86b12b5fac5748b92244

SHA1 (HH.dat) = 894893e21d257bcab4c6e5c123585af08b0a0551
SHA256 (HH.dat) = 8c85bdaf6bb3b096fe06cd50bbf9fbbd5513a179ad
b81465b73d0bebd4b845c8

SHA512 (HH.dat) = 6a0b89a2dbl1bf2f7cd014cc4c68944f31f3ac3cela
a7ce82d1d72bda9c9f50774e85f3ac2beabaf744137932dee2b031826971
8eb5dal07c12a6af038515a23f18

118

© 00 N O O e W N - 0 J O T =W NN

N O U s W N

kddcup04

http://cs.joensuu.fi/sipu/datasets/ [FS1§]

MD5 (KDDCUPO4Bio.txt) = 7042bef84dc482c8eled0af1c8388ecae
SHA1 (KDDCUPO4Bio.txt) = d5ee968039e3859903517fc2b819b433a4f
76elf

SHA256 (KDDCUPO4Bio.txt) = 32e82eb6afbad072a3858b63503ae8ab0
34290d24e03495a499d0ccb5b4f1dd3

SHA512 (KDDCUPO4Bio.txt) = f8efa8cd8e85ale7e21f63de000ebclae
bcb2e3454c1e23cf20c32313cb326c5d4136af219877d5b3aad4albclaal8
c6bb5a1646228fe4e02fb2fe61030b189111

mnist784

http://yann.lecun.com/exdb/mnist/

MD5 (train-images-idx3-ubyte) = 6bbc9ace898e44aeb7dad6a32403
ladb

SHA1 (train-images-idx3-ubyte) = c3557c10f29b266e19b3eeeelb5
3c8b5e0ef4a8ea

SHA256 (train-images-idx3-ubyte) = ba891046e6505d7aadcbbe256
80a0738adl6aec93bde7f9b65e87a2fc25776db

SHA512 (train-images-idx3-ubyte) = 0c574eb011cd10a30a29887cb
7614a092e948881c3fa6a94b2c840413bab363a99f£10274cb1790852e4b
f8fa2aab6c29d2bbal3fa3b20b58ca8£f381cf004£d478

sl

http://cs.joensuu.fi/sipu/datasets/ [FS1§]

MD5 (sl1.txt) = aadba37ab4b91b43320b6f1a44d61768

SHA1 (sl.txt) = a40ff718983669d42546366b241b981e86c19bbb
SHA256 (sl1.txt) = d98ddffe6ad4ff67babflaacdlb679e7b858c8c97b
eleb1c818febf4552664af

SHA512 (sl.txt) = 6a0f93fd661f3801623746757ee4cb842ab6£688db
ff2acdd7e3d240dbd20c792f01ab0adbe5226b7895634£08d286aead2792
113e6bf3b02763dac26dab7454

119

© 00 N O U k= W N -

Anhang A. Datensétze

uscensus

http://archive.ics.uci.edu/ml/datasets/us+census+data+(1990) [DG17]

MD5 (USCensus1990.data.txt) = 13852241ffbdlbced75d4625e6ce9a
86

SHA1 (USCensus1990.data.txt) = ce03021c23ec87a90404ff772e522
ecbdf248d5f

SHA256 (USCensus1990.data.txt) = 38e99f50855ddc03167b715b365
19ef40b77295ae4e85dfef0c6429ac79ed799

SHA512 (USCensus1990.data.txt) = a905c1a43d21c1330f26f3a4cab
c8971fadf6859a759eb9b3dca995028be83be21a28c866191311cfd4005f
6cada28d5e57693dc1f671071d209f1086305b1lee

120

Inhalt der beigelegten CD-ROM

Auf der beigelegten CD-ROM finden sich, neben einer digitalen Version dieser
Arbeit, die in Kapitel 4] vorgestellten Datensétze, der Quelltext der Implemen-
tierung, die Rohdaten der Auswertung und die zur Auswertung verwendeten

Hilfsprogramme.
Die Quelldateien sind UTF-8-kodiert und haben Unix-Zeilenenden (LF).

Vergl__Untersuchung_von_exaktem_durch_Schr_beschl_

k__means__Clustering.pdf Dieses Dokument.
datasets.tar.gz gzip-komprimiertes Tar-Archiv der Datensétze.
impl/ Quelltext der Implementierung.
impl.tar.gz gzip-komprimiertes Tar-Archiv des impl/-Ordners.

results.tar.gz gzip-komprimiertes Tar-Archiv der Rohdaten der Auswertung.

121

Verzeichnis der Pruningkriterien

Il. Pruningkriterium (Vergleich von unterer und oberer Schranke) 21
2. Pruningkriterium (Center-Center-Distanz)| 28
3. Pruningkriterium (Distanz zu einem Fixpunkt) 29
4. Pruningkriterium (Center-Center-Distanz (Exponion))| 45

123

Definitionsverzeichnis

Il. Definition (Pruning) 13
2. Definition (Schrankenbasierter Algorithmus) 13
3. Definition (Exakter Algorithmus)| 14
4. Definition (Metrische Distanzfunktion und Dreiecksungleichung)| 18
5. Definition (Statische und aktive Cluster)| 20
6. Definition (Inverse Dreiecksungleichung) 21
7. Definition (Big Mover) 25
8. Definition (Dominanz) 76

125

Abbildungsverzeichnis

2.1. Beispiel fiir k-means-Clustering] 7
2.2. Das Clustering ist von der Initialisierung abhangig| 9
2.3. Die Laufzeit ist von der Initialisierung abhangigl
2.4. intra- vs. inter-Cluster-Distanzenl 11
2.5. Ausreifler] 11
2.6. Fehler beim Clustering des sl-Datensatzes fur steigende £ . . 12
2.7. Leere Clusterl 12
3.1. Auswahlwahrscheinlichkeit bei k-means++4| 19
13.2. Nicht auftrennbare Cluster durch schlechte Initialisierung/ . . . 19
3.3. (Scharfe) untere Schranken des Elkan| 24
3.4. (Scharfe) untere Schranke des Hamerly| 25
3.5. (Scharfe) untere Schranke des Drake| 27
13.6. Pruning mit Hilfe von Center-Center-Distanzen 29
3.7. Der Annulusl. 30
13.8. Sum of Norms im Vergleich zu Norm of Sums| 32
13.9. Pruning im Exponion|. o000 46
13.10. Gute und schlechte Gruppierung im Yinyang 50
4.1. Der birchl-Datensatz 54
4.2. Mogliche Clusterzentren im mnist784-Datensatz 56
4.3. Der sl-Datensatz] o7
6.1. Rangliste der Zeiten (colormoments) 85
6.2. Rangliste der Zeiten (housel6h) 85
6.3. Rangliste der Distanzberechnungen (housel6h). 86
6.4. Rangliste der Zeiten (covtype) 86
6.5. Rangliste der Zeiten (uscensus)| 87
6.6. Rangliste der Zeiten (kddcup04)|. 87
6.7. Rangliste der Distanzberechnungen (kddcup04) 88
6.8. Rangliste der durchschnittlichen Zeiten zum Clustering abhéngig |
vom Datensatzl 0oL 88
6.9. Aktive Cluster pro Iteration (birch) 90
6.10. Aktive Cluster pro Iteration (conflongdemo)| 90

127

Abbildungsverzeichnis

16.11. Aktive Cluster pro Iteration (mnist784). 91
(6.12. Aktive Cluster pro Iteration (uscensus) 91
6.13. Aktive Cluster nach Clusteringfortschritt (conflongdemo)| . . . 92
[6.14. Durchschnittlicher Zentrenabstand geteilt durch maximale Zen- |
| trenbewegung (birch) L0000 94
[6.15. Durchschnittlicher Zentrenabstand geteilt durch maximale Zen- |
| trenbewegung (mnist784).o 94
[6.16. Maximale Zentrenbewegung geteilt durch durchschnittliche Zen- |
| trenbewegung (birch)[. 95
[6.17. Maximale Zentrenbewegung geteilt durch durchschnittliche Zen- |
| trenbewegung (mnist784).o oL 95
[6.18. Maximale Zentrenbewegung geteilt durch durchschnittliche Zen- |
| trenbewegung (Uscensus) 95
[6.19. Maximale Zentrenbewegung geteilt durch durchschnittliche Zen- |
| trenbewegung aktiver Cluster (birch)| 96
[6.20. Maximale Zentrenbewegung geteilt durch durchschnittliche Zen- |
| trenbewegung aktiver Cluster (mnist784) 96
[6.21. Maximale Zentrenbewegung geteilt durch durchschnittliche Zen- |
| trenbewegung aktiver Cluster (uscensus)| 96
16.22. Vergleich von Elkan und Simplified Elkan (mnist784, k = 16))| 99
16.23. Vergleich von Elkan und Simplified Elkan (mnist784, k = 64)| 99
[6.24. Vergleich von Elkan und Simplified Elkan (mnist784, k = 96)| 99
[6.25. Vergleich von Elkan und Simplified Elkan (uscensus, k = 16)| . 100
[6.26. Vergleich von Elkan und Simplified Elkan (uscensus, k = 64)/. 100
[6.27. Vergleich von Elkan und Simplified Elkan (uscensus, k = 96)| . 100
16.28. Nie aktualisierte untere Elkan-Schranke (uscensus, k = 96)| . . 101
[6.29. Anteil der genutzten Schranken im Drake. 103
[6.30. Heatmap des Anteils der genutzten Schranken| 103
[6.31. Einfluss der Position des Fixpunkts fur den uscensus| 107
[6.32. Ansteigende Flache im Annulus je naher der Fixpunkt kommt| 108

128

Algorithmenverzeichnis

2.1. Hauptschleife des Lloyd-Algorithmus 5
2.2. Berechnung der Zielfunktion des Lloyd-Algorithmus| 5
2.3. Zuordnung der Datenpunkte beim Lloyd-Algorithmus| 5

13.1. assignPointsToCluster fur einen konkreten Datenpunkt p im Elkan| 36

13.2. assignPointsToCluster fiir einen konkreten Datenpunkt p im |
| Hamerly|00 38

13.3. assignPointsToCluster fiir einen konkreten Datenpunkt p im Drake| 40

13.4. assignPointsToCluster fir einen konkreten Datenpunkt p im |
Annulug 43

13.5. assignPointsToCluster fiir einen konkreten Datenpunkt p im |

| Exponion|o 48

13.6. assignPointsToCluster fiir einen konkreten Datenpunkt p im |

| Yinyang| 51

129

Listings

6.1. Algorithmen-Varianten| 70
6.2. Kompilierungsparameter| 70
6.3. Information tuber die CPU des Testsystems|. 71
6.4. Schlechte Sprungvorhersage bei 32 Dimensionen| 75
6.5. Sprungvorhersage fur Elkan|o 000000 102

131

Tabellenverzeichnis

13.1. Eckdaten der Techniken zur Beschleunigung von k-means . . . 34
3.2. Beispielhafte Sortierung der Clusterzentren fiir den Exponion| 48
4.1. Eckdaten der genutzten Datensétze 58
6.1. Rechenzeit fiir Distanzberechnungen| 74
6.2. Dominierungen (Distanzberechnungen)| 77
6.3. Dominierungen (Realzeit) fir mnist784) 78
6.4. Dominierungen (Realzeit) fir kleine Dimension| 80
6.5. Durchschnittliche Clusteringzeit (birch). 81
6.6. Durchschnittliche Clusteringzeit (conflongdemo)| 82

133

Abkiirzungsverzeichnis

CPU Central Processing Unit

DBSCAN Density-based spatial clustering of applications with noise
GNU GNU’s Not Unix

HSV Farbwert (Hue), Sattigung (Saturation), Hellwert (Value)
IPFS InterPlanetary File System

JSON JavaScript Object Notation

KDDCUP Knowledge Discovery and Data Mining Competition
KVM Kernel-based Virtual Machine

NVMe NVM Express

PAM Partitioning Around Medoids
RSS Resident Set Size

SSD Solid-state Drive

SSE Streaming SIMD Extensions
STL Standard Template Library

135

[AV07]

[BMS96]

[Bon]

[CKV12]

[CPL17]

[cpp]

[DEC]

Literatur

David Arthur und Sergei Vassilvitskii. ,,K-means+-+: The Ad-
vantages of Careful Seeding®. In: Proceedings of the Eighteenth
Annual ACM-SIAM Symposium on Discrete Algorithms. SODA
'07. New Orleans, Louisiana: Society for Industrial und Applied
Mathematics, 2007, S. 1027-1035. 1SBN: 978-0-898716-24-5. URL:
http://dl.acm.org/citation.cfm?id=1283383.1283494.

P. S. Bradley, O. L. Mangasarian und W. N. Street. ,,Clustering via
Concave Minimization“. In: Proceedings of the 9th International
Conference on Neural Information Processing Systems. NIPS’96.
Denver, Colorado: MIT Press, 1996, S. 368-374. URL: http://dl.
acm.org/citation.cfm?id=2998981.2999033.

Jonas Bonér. Latency Numbers Every Programmer Should Know.
URL: https://gist.github.com/jboner/2841832 (besucht am
05.12.2019).

M. Emre Celebi, Hassan A. Kingravi und Patricio A. Vela. ,, A
Comparative Study of Efficient Initialization Methods for the
K-Means Clustering Algorithm® In: CoRR abs/1209.1960 (2012).
arXiv: 1209.1960. URL: http://arxiv.org/abs/1209.1960.

Marco Capd, Aritz Pérez und Jose A. Lozano. ,,An efficient ap-
proximation to the K-means clustering for massive data® In:
Knowledge-Based Systems 117 (2017). Volume, Variety and Ve-
locity in Data Science, S. 56-69. 1SSN: 0950-7051. DOTI: https:
//doi.org/10.1016/j .knosys.2016 .06 .031. URL: http !
//www.sciencedirect.com/science/article/pii/S09507051
16302027.

cppreference.com. Move constructors. URL: https://en.cppref

erence.com/w/cpp/language/move_constructor (besucht am
16.09.2019).

DE-CIX Management GmbH. DE-CIX Frankfurt statistics. URL:
https://www.de-cix.net/de/locations/germany/frankfurt
/statistics (besucht am 20.08.2019).

137

http://dl.acm.org/citation.cfm?id=1283383.1283494
http://dl.acm.org/citation.cfm?id=2998981.2999033
http://dl.acm.org/citation.cfm?id=2998981.2999033
https://gist.github.com/jboner/2841832
http://arxiv.org/abs/1209.1960
http://arxiv.org/abs/1209.1960
http://dx.doi.org/https://doi.org/10.1016/j.knosys.2016.06.031
http://dx.doi.org/https://doi.org/10.1016/j.knosys.2016.06.031
http://www.sciencedirect.com/science/article/pii/S0950705116302027
http://www.sciencedirect.com/science/article/pii/S0950705116302027
http://www.sciencedirect.com/science/article/pii/S0950705116302027
https://en.cppreference.com/w/cpp/language/move_constructor
https://en.cppreference.com/w/cpp/language/move_constructor
https://www.de-cix.net/de/locations/germany/frankfurt/statistics
https://www.de-cix.net/de/locations/germany/frankfurt/statistics

Literatur

[DG17] Dheeru Dua und Casey Graff. UCI Machine Learning Repository.
2017. URL: http://archive.ics.uci.edu/mll

[Din+15] Yufei Ding u. a. ,,Yinyang K-means: A Drop-in Replacement of the
Classic K-means with Consistent Speedup®. In: Proceedings of the
32Nd International Conference on International Conference on
Machine Learning - Volume 37. ICML’15. Lille, France: JMLR.org,
2015, S. 579-587. URL: http://dl.acm.org/citation.cfm?id=
3045118.3045181.

[DLMEF] NIST Digital Library of Mathematical Functions. http://dlmf.nist.go-
v/, Release 1.0.23 of 2019-06-15. F. W. J. Olver, A. B. Olde Daalhu-
is, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R.
Miller and B. V. Saunders, eds. URL: http://dlmf.nist.gov/.

[Dral2] Jonathan Drake. ,,Accelerated k-means with adaptive distance
bounds®. In: 2012.

[Dral3] Jonathan Drake. ,,Faster k-means Clustering“. Magisterarb. Baylor
University, Sep. 2013.

[Elb] Ron Elber. Description of the KDD-Cup 2004 Protein Data. URL:
http://osmot.cs.cornell.edu/kddcup/protein_descriptio
n.pdf| (besucht am 24.10.2019).

[E1k03] Charles Elkan. ,,Using the Triangle Inequality to Accelerate K-
means®. In: Proceedings of the Twentieth International Confe-
rence on International Conference on Machine Learning. ICML’03.
Washington, DC, USA: AAAI Press, 2003, S. 147-153. 1SBN: 1-
57735-189-4. URL: http://dl.acm.org/citation.cfm?id=
3041838.3041857.

[Est+96] Martin Ester u.a. ,A density-based algorithm for discovering
clusters in large spatial databases with noise®. In: AAAI Press,
1996, S. 226-231.

[FS18] Pasi Franti und Sami Sieranoja. K-means properties on siz cluste-
ring benchmark datasets. 2018. URL: http://cs.uef.fi/sipu/
datasets/.

138

http://archive.ics.uci.edu/ml
http://dl.acm.org/citation.cfm?id=3045118.3045181
http://dl.acm.org/citation.cfm?id=3045118.3045181
http://dlmf.nist.gov/
http://osmot.cs.cornell.edu/kddcup/protein_description.pdf
http://osmot.cs.cornell.edu/kddcup/protein_description.pdf
http://dl.acm.org/citation.cfm?id=3041838.3041857
http://dl.acm.org/citation.cfm?id=3041838.3041857
http://cs.uef.fi/sipu/datasets/
http://cs.uef.fi/sipu/datasets/

Literatur

[FVO06] P. Frénti und O. Virmajoki. ,Iterative shrinking method for clus-
tering problems*. In: Pattern Recognition 39.5 (2006), S. 761-765.
DOI: 10.1016/j.patcog.2005.09.012. URL: http://dx.doi.
org/10.1016/j.patcog.2005.09.012.

[Ges15| Gesamtverband der Deutschen Versicherungswirtschaft e.V. Die
Geschichte der Datenanalyse. Nov. 2015. URL: https://www.gdv.
de /de/themen/news/infografik---die-geschichte-der-
datenanalyse-17774 (besucht am 19.08.2019).

[Gz] Cristhian (https://math.stackexchange.com/users/129028 /cristhian-
gz) Gz. Formal proof that mean minimize squared error func-
tion. Mathematics Stack Exchange. URL:https://math.stackex-
change.com/q/967182 (version: 2014-10-10). eprint: https: //
math . stackexchange . com/q/967182. URL: https://math.
stackexchange.com/q/967182| (besucht am 01.09.2019).

[Ham10] Greg Hamerly. ;Making k-means even faster”. In: Proceedings of
the 2010 SIAM International Conference on Data Mining. STAM
International Conference on Data Mining, 2010, S. 130-140. DOTI:
10.1137/1.9781611972801 . 12. eprint: https://epubs.siam.
org/doi/pdf/10.1137/1.9781611972801 . 12. URL: https :
//epubs.siam.org/doi/abs/10.1137/1.9781611972801.12.

[HD17] Greg Hamerly und Jonathan Drake. ,Chapter 2 Accelerating
Lloyd’ s Algorithm for k-Means Clustering®. In: 2017.

[IEEE 754] ,IEEE Standard for Floating-Point Arithmetic. In: IEEE Std
754-2019 (Revision of IEEE 75/-2008) (Juli 2019), S. 1-84. por:
10.1109/IEEESTD.2019.8766229.

[Kan400] Tapas Kanungo u.a. The analysis of a simple k-means clustering
algorithm. Techn. Ber. MARYLAND UNIV COLLEGE PARK
DEPT OF COMPUTER SCIENCE, 2000.

[Kan+02] Tapas Kanungo u.a. ,An Efficient k-Means Clustering Algorithm:
Analysis and Implementation®. In: IEEE Trans. Pattern Anal.
Mach. Intell. 24.7 (Juli 2002), S. 881-892. 1SSN: 0162-8828. DOLI:
10.1109/TPAMI.2002.1017616. URL: http://dx.doi.org/10.
1109/TPAMI.2002.1017616.

139

http://dx.doi.org/10.1016/j.patcog.2005.09.012
http://dx.doi.org/10.1016/j.patcog.2005.09.012
http://dx.doi.org/10.1016/j.patcog.2005.09.012
https://www.gdv.de/de/themen/news/infografik---die-geschichte-der-datenanalyse-17774
https://www.gdv.de/de/themen/news/infografik---die-geschichte-der-datenanalyse-17774
https://www.gdv.de/de/themen/news/infografik---die-geschichte-der-datenanalyse-17774
https://math.stackexchange.com/q/967182
https://math.stackexchange.com/q/967182
https://math.stackexchange.com/q/967182
https://math.stackexchange.com/q/967182
http://dx.doi.org/10.1137/1.9781611972801.12
https://epubs.siam.org/doi/pdf/10.1137/1.9781611972801.12
https://epubs.siam.org/doi/pdf/10.1137/1.9781611972801.12
https://epubs.siam.org/doi/abs/10.1137/1.9781611972801.12
https://epubs.siam.org/doi/abs/10.1137/1.9781611972801.12
http://dx.doi.org/10.1109/IEEESTD.2019.8766229
http://dx.doi.org/10.1109/TPAMI.2002.1017616
http://dx.doi.org/10.1109/TPAMI.2002.1017616
http://dx.doi.org/10.1109/TPAMI.2002.1017616

Literatur

[KENO0O] T. Kaukoranta, P. Franti und O. Nevalainen. ,A fast exact GLA
based on code vector activity detection®. In: IEEE Transactions
on Image Processing 9.8 (Aug. 2000), S. 1337-1342. DOI:|10.1109/
83.855429.

[KJ09) Leonard Kaufman und Peter J Rousseeuw. Finding Groups in Da-
ta: An Introduction to Cluster Analysis. Sep. 2009. 1SBN: 9780470317488.

[Low+12] Yucheng Low u.a. ,Distributed GraphLab: A Framework for
Machine Learning and Data Mining in the Cloud®. In: Proc. VLDB
Endow. 5.8 (Apr. 2012), S. 716-727. 1SsN: 2150-8097. DOI: |10 .
14778/2212351.2212354, URL: https://doi.org/10.14778/
2212351.2212354.

[Mar18] Bernard Marr. How Much Data Do We Create Every Day? The
Mind-Blowing Stats Everyone Should Read. Mai 2018. URL: https:
/ /www . forbes . com/sites/bernardmarr/2018/05/21/how~
much-data-do-we-create-every-day-the-mind-blowing-+
stats-everyone - should-read/#1131172760ba (besucht am
20.08.2019).

[MNV12] Meena Mahajan, Prajakta Nimbhorkar und Kasturi Varadarajan.
» The planar k-means problem is NP-hard“. In: Theoretical Compu-
ter Science 442 (2012). Special Issue on the Workshop on Algorith-
ms and Computation (WALCOM 2009), S. 13-21. 1sSN: 0304-3975.
DOI: https://doi.org/10.1016/j.tcs.2010.05.034. URL:
http://www . sciencedirect . com/science/article/pii/
©0304397510003269.

INF16] James Newling und Francois Fleuret. ,,Fast K-means with Accura-
te Bounds®. In: Proceedings of the 33rd International Conference
on International Conference on Machine Learning - Volume /8.
ICML’16. New York, NY, USA: JMLR.org, 2016, S. 936-944. URL:
http://dl.acm.org/citation.cfm?id=3045390.3045490.

[RA15] Ryan A. Rossi und Nesreen K. Ahmed. , The Network Data
Repository with Interactive Graph Analytics and Visualization®.
In: AAAIL 2015. URL: http://networkrepository.com.

140

http://dx.doi.org/10.1109/83.855429
http://dx.doi.org/10.1109/83.855429
http://dx.doi.org/10.14778/2212351.2212354
http://dx.doi.org/10.14778/2212351.2212354
https://doi.org/10.14778/2212351.2212354
https://doi.org/10.14778/2212351.2212354
https://www.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-should-read/#1131172760ba
https://www.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-should-read/#1131172760ba
https://www.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-should-read/#1131172760ba
https://www.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-should-read/#1131172760ba
http://dx.doi.org/https://doi.org/10.1016/j.tcs.2010.05.034
http://www.sciencedirect.com/science/article/pii/S0304397510003269
http://www.sciencedirect.com/science/article/pii/S0304397510003269
http://dl.acm.org/citation.cfm?id=3045390.3045490
http://networkrepository.com

[Scul0]

[Sim17]

[SZ19]

[War]

[Wu+08]

[ZRL9T]|

Literatur

Petr Rysavy und Greg Hamerly. ,,Geometric methods to ac-
celerate k-means algorithms®. In: Proceedings of the 2016 SI-
AM International Conference on Data Mining, S. 324-332. DOI:
10.1137/1.9781611974348 . 37. eprint: https://epubs.siam.
org/doi/pdf/10.1137/1.9781611974348 . 37. URL: https :
//epubs.siam.org/doi/abs/10.1137/1.9781611974348. 37.

D. Sculley. ,Web-scale K-means Clustering®. In: Proceedings of
the 19th International Conference on World Wide Web. WWW
’10. Raleigh, North Carolina, USA: ACM, 2010, S. 1177-1178.
ISBN: 978-1-60558-799-8. DOI: 10.1145/1772690.1772862. URL:
http://doi.acm.org/10.1145/1772690.1772862.

Radu Simion. Jan. 2017. URL: https://www . bnrbeurs . nl/
2017/01/20/algorithmic-trading-the-milliseconds-that-
bring-millions/ (besucht am 29.08.2019).

Erich Schubert und Arthur Zimek. FLKI: A large open-source
library for data analysis - ELKI Release 0.7.5 "Heidelberg”. 2019.
arXiv: [1902.03616 [cs.LG].

lan Ward. JSON Lines - Documentation for the JSON Lines
text file format. URL: http:// jsonlines . org/| (besucht am
31.10.2019).

Xindong Wu u. a. ,,/Top 10 algorithms in data mining®. In: Know-
ledge and Information Systems 14.1 (Jan. 2008), S. 1-37. ISSN:
0219-3116. por1: 10.1007/s10115-007-0114-2. URL: https :
//doi.org/10.1007/s10115-007-0114-2,

T. Zhang, R. Ramakrishnan und M. Livny. ,BIRCH: A new data
clustering algorithm and its applications®. In: Data Mining and
Knowledge Discovery 1.2 (1997), S. 141-182.

141

http://dx.doi.org/10.1137/1.9781611974348.37
https://epubs.siam.org/doi/pdf/10.1137/1.9781611974348.37
https://epubs.siam.org/doi/pdf/10.1137/1.9781611974348.37
https://epubs.siam.org/doi/abs/10.1137/1.9781611974348.37
https://epubs.siam.org/doi/abs/10.1137/1.9781611974348.37
http://dx.doi.org/10.1145/1772690.1772862
http://doi.acm.org/10.1145/1772690.1772862
https://www.bnrbeurs.nl/2017/01/20/algorithmic-trading-the-milliseconds-that-bring-millions/
https://www.bnrbeurs.nl/2017/01/20/algorithmic-trading-the-milliseconds-that-bring-millions/
https://www.bnrbeurs.nl/2017/01/20/algorithmic-trading-the-milliseconds-that-bring-millions/
http://arxiv.org/abs/1902.03616
http://jsonlines.org/
http://dx.doi.org/10.1007/s10115-007-0114-2
https://doi.org/10.1007/s10115-007-0114-2
https://doi.org/10.1007/s10115-007-0114-2

Eidesstattliche Erklarung

Hiermit versichere ich, dass die vorliegende Arbeit iiber Fine vergleichende
Untersuchung von exaktem, durch Schranken beschleunigtem k-means-Clustering
selbststidndig verfasst worden ist, dass keine anderen Quellen und Hilfsmittel
als die angegebenen benutzt worden sind und dass die Stellen der Arbeit, die
anderen Werken — auch elektronischen Medien — dem Wortlaut oder Sinn nach
entnommen wurden, auf jeden Fall unter Angabe der Quelle als Entlehnung

kenntlich gemacht worden sind.

Tim Wolfgang Diisterhus, Miinster, 9. Januar 2020

Ich erklare mich mit einem Abgleich der Arbeit mit anderen Texten zwecks
Auffindung von Ubereinstimmungen sowie mit einer zu diesem Zweck vorzu-

nehmenden Speicherung der Arbeit in eine Datenbank einverstanden.

Tim Wolfgang Disterhus, Miinster, 9. Januar 2020

143

	Einleitung
	Das k-means-Problem
	Der Lloyd-Algorithmus
	Zuordnung der Datenpunkte
	Verschiebung der Clusterzentren
	Konvergenz
	Beispiel
	Initialisierung
	Einschränkungen und Probleme

	Die Optimierung
	Abgrenzung zu anderen Clustering-Verfahren

	Beschleunigung von k-means
	Initialisierung
	Schranken
	Aktualisierung der Schranken
	Obere Schranke
	Untere Schranke

	Weitere Pruningkriterien
	Center-Center-Distanzen
	Distanz zu einem Fixpunkt („Norm“)

	Sonstige Verbesserungen
	Norm of Sums
	Delta Updates
	Nebenläufigkeit

	Eckdaten der Techniken
	Einsatz in den Algorithmen
	Elkan
	Hamerly
	Drake
	Annulus
	Exponion
	Yinyang

	Verwendete Testdatensätze
	Beschreibung der Datensätze
	Eckdaten der Datensätze

	Praktische Umsetzung
	Designentscheidungen
	Konkrete Umsetzung der Designentscheidungen

	Empirische Untersuchung
	Methodik
	Beurteilungskriterien
	Beurteilung
	Vergleich der Algorithmen
	Verhalten der Datensätze
	Analyse der Algorithmen

	Fazit und Ausblick
	Datensätze
	Inhalt der beigelegten CD-ROM

