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Abstract

Diese Arbeit analysiert die Leistung von sechs durch Schranken beschleunigten
Algorithmen zum exakten k-means-Clustering. Im ersten Teil wird durch eine
systematische Zerlegung der Algorithmen untersucht, welche Einzelkomponen-
ten genutzt werden, um Rechenaufwand einzusparen. Es lässt sich feststellen,
dass sich die Einzelkomponenten konzeptionell in mehreren Algorithmen wie-
derfinden. Insgesamt ergeben sich bei der Zerlegung der sechs Algorithmen
drei unterschiedliche Arten von unteren Schranken zwischen Datenpunkten
und Clusterzentren. Es werden zwei zusätzliche Informationen über die Posi-
tionen der Clusterzentren erfasst. Zuletzt lassen sich zwei weitere Techniken
zur effizienteren Datenhaltung finden, die auf jeden untersuchten Algorithmus
anwendbar sind. Anschließend wird diskutiert, wie sich die Algorithmen aus
den vorgestellten Einzelkomponenten zusammensetzen.

Im zweiten Teil dieser Arbeit wurden die Algorithmen gemäß der Beschrei-
bung in ihren Originalveröffentlichungen in C++ implementiert. Soweit dies
sinnvoll möglich war, wurden Varianten der Algorithmen erstellt, bei denen
zusätzliche Komponenten integriert oder deaktiviert wurden. Auch im Falle
mehrerer plausibler Interpretationen der Beschreibung wurden unterschiedliche
Varianten des Algorithmus implementiert. Insgesamt ergeben sich 39 Varianten,
deren Leistung bei jeweils identischer Startsituation empirisch mit unterschied-
lichen Datensätzen überprüft wurde. Es stellt sich heraus, dass geringe Modifi-
kationen einen großen Einfluss auf die Leistung haben. Auch bei identischen
Einzelkomponenten können abhängig von der konkreten Zusammensetzung
des Algorithmus große Leistungsunterschiede bestehen. Insbesondere kann es
mitunter sinnvoll sein, Einzelkomponenten zu deaktivieren, da der Overhead in
der konkreten Kombination höher als die Zeitersparnis ist.
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1
Einleitung

Menschen beschäftigen sich schon seit Jahrhunderten mit der Analyse von
Daten [Ges15]. Zu Beginn geschah dies manuell, mit Stift und Papier. Mit der
Erfindung der Rechenmaschinen und Computer konnte diese Arbeit erleichtert
werden. Heutzutage leben wir im Zeitalter von „Big Data“. Sekündlich werden
fast 30 TB Daten neu geschaffen [Mar18] und vollautomatisch verarbeitet,
gefiltert, sortiert, analysiert und klassifiziert. Alleine der weltgrößte Internet-
Exchange DE-CIX in Frankfurt am Main leitet im Jahresmittel 4,1 Terabit
Daten pro Sekunde durch [DEC].

Unternehmen haben ein Interesse daran, dass diese Datenverarbeitung mög-
lichst schnell und effizient abläuft. Schnell ist hier sowohl in Bezug auf die
Realzeit, als auch in Bezug auf die CPU-Zeit zu verstehen. Die realzeitliche
Komponente ist leicht zu erkennen: Menschen warten nicht gerne. Der Com-
puter soll das gewünschte Ergebnis im Idealfall „sofort“ liefern. Ein anderer
Anwendungsfall ist Hochfrequenzhandel. Dort entscheiden Millisekunden über
die Höhe der Gewinne beziehungsweise der Verluste [Sim17]. Aber auch die
CPU-Zeit darf nicht außer Acht gelassen werden. Eine hochparallele Implemen-
tierung kann sehr kurze Reaktionszeiten liefern. Um diese Leistung in der Praxis
jedoch zu erreichen, würde potentiell Hardware im Wert von hunderttausenden
Euro benötigt. Neben den Anschaffungskosten für die Hardware wird für jede
Berechnung selbstverständlich auch elektrischer Strom und eine angemessene
Kühlung der einzelnen Komponenten benötigt. Im Rahmen der aktuellen Dis-
kussionen zur „Klimakrise“ besteht für Unternehmen ein Anreiz, sich durch
effizientere Software und dem damit verbundenen geringeren Ressourcenver-
brauch als besonders ökologisch handelnd auf dem Markt zu positionieren.
Betreiber von Rechenzentren, Webhostingpaketen und Mietservern werben
beispielsweise damit, dass sie ausschließlich Ökostrom beziehen.
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Kapitel 1. Einleitung

Es besteht somit ein Bedarf an der Entwicklung effizienter Algorithmen, die
auch für große und weiter steigende Datenmengen schnell und ressourcenscho-
nend arbeiten und die gewünschten Ergebnisse liefern.

In dieser Arbeit soll es um die Untersuchung von Methoden zum Clustering
von Daten, konkret um Algorithmen der k-means-Familie gehen. Beim Cluste-
ring wird als Eingabe ein Datenbestand ohne nähere Informationen zum Inhalt
übergeben. Der Algorithmus versucht anschließend selbstständig („unsuper-
vised“) Muster in diesen Daten zu finden und diese in Gruppen („Cluster“)
aufzuteilen. Daten innerhalb eines resultierenden Clusters sind sich „ähnlich“,
Daten unterschiedlicher Cluster „unähnlich“. Die konkrete Ausgestaltung der
„Ähnlichkeit“ ist abhängig vom eingesetzten Clustering-Algorithmus und der
Struktur des übergebenen Datenbestands.

Zunächst soll in Kapitel 2 das k-means-Problem im Detail vorgestellt werden.
Es wird diskutiert, wie Clustering mit einem k-means-Algorithmus funktio-
niert, wie die resultierenden Cluster beschaffen sind und welche grundsätzlichen
Vor- und Nachteile beziehungsweise welche Einschränkungen die Wahl eines
k-means-Algorithmus mit sich bringt. Kapitel 3 zerlegt die in dieser Arbeit
untersuchten Algorithmen zum beschleunigten, exakten, k-means-Clustering
zunächst systematisch in ihre Einzelbestandteile und untersucht anschließend,
wie diese zum fertigen Algorithmus zusammengefügt werden. Nachdem die
Funktionsweise aus der theoretischen Perspektive hinreichend aufgeschlüsselt
ist, soll es in Kapitel 4 um die Testdatensätze gehen, die genutzt werden, um
die theoretischen Leistungsmerkmale auf ihre Praxistauglichkeit zu untersuchen.
Dazu wird in Kapitel 5 zunächst vorgestellt, welche Designentscheidungen in
der konkreten Implementierung getroffen wurden und anschließend werden
die resultierenden Messdaten des Clusterings der Datensätze bei verschiede-
nen Algorithmen und Algorithmenkonfigurationen in Kapitel 6 vergleichend
untersucht.
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2
Das k-means-Problem

Die wohl am häufigsten verwendete und in dieser Arbeit betrachtete Familie
von Algorithmen zum Clustern von Daten ist die k-means-Familie [Wu+08].
Gegeben

1. einer gewünschten Anzahl von Clustern k und

2. einer Menge von Datenpunkten (P )

ist es das Ziel des k-means-Problems k Clusterzentren (C) zu finden, sodass die
Summe (J) der quadratischen euklidischen Distanzen zwischen Clusterzentren
und ihren jeweils zugeordneten Datenpunkten (A(c)) minimiert wird:

J =
∑
c∈C

∑
p∈A(c)

d(p, c)2 (2.1)

d(p, c) = ‖p− c‖2

Aus diesen Anforderungen ergibt sich, dass die Datenpunkte ihrem jeweils
nächstgelegenen Clusterzentrum zugeordnet werden und die Position der Clus-
terzentren dem geometrischen Schwerpunkt aller Datenpunkte eines Clusters,
also dem namensgebenden komponentenweisen arithmetischen Mittel (englisch
„mean“), entspricht.

Als Resultat entsteht eine Voronoi-Partitionierung des Raumes. Die entstehen-
den Cluster sind konvexe Polygone, die durch ihr Clusterzentrum repräsentiert
werden.

Das Finden der exakten Lösung des k-means-Problems, also das Erreichen
des globalen Minimums, ist NP-schwer [MNV12]. Das Finden eines lokalen Mi-
nimums (in seltenen Fällen eines Sattelpunktes) ist allerdings effizient möglich.
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Kapitel 2. Das k-means-Problem

Variablen

Zunächst möchten wir die in dieser Arbeit verwendeten Variablen und Bezeich-
ner definieren:

P = Die Menge aller Datenpunkte.
N = |P |, die Anzahl der Datenpunkte.
p = Ein Datenpunkt.
C = Die Menge aller Clusterzentren.
k = |C|, die Anzahl der gewünschten Cluster.
c = Ein Clusterzentrum.
J = Der Wert der Zielfunktion.
d = Eine Distanzfunktion (die euklidische Distanz).
A(c) = Die Menge der dem Clusterzentrum c zugeordneten

Datenpunkte.
a(p) = Das einem Datenpunkt p zugewiesene Clusterzentrum.
u(. . . ) = Eine obere Schranke. Parameter und Bedeutung sind abhängig

vom Algorithmus.
l(. . . ) = Eine untere Schranke. Parameter und Bedeutung sind abhängig

vom Algorithmus.
cc(c1, c2) = Der Abstand zwischen den Clusterzentren c1 und c2.
ccg(c) = Der minimale Abstand cc(c, c′) für c′ 6= c.

2.1. Der Lloyd-Algorithmus

Eine der ersten und die wohl populärste Implementierung von k-means ist
der Algorithmus von Lloyd [Elk03; Ham10; Dra12]. Dieser wird daher typi-
scherweise als der k-means-Algorithmus bezeichnet. Nach der Initialisierung,
bei der k Punkte als initiale Clusterzentren ausgewählt werden, werden zwei
Phasen, die jeweils die Zielfunktion verringern, abwechselnd wiederholt, bis der
Algorithmus konvergiert. Die Auswahl dieser initialen Clusterzentren wird in
den Abschnitten 2.1.5 und 3.1 genauer betrachtet.

Insgesamt ergibt sich die in Algorithmus 2.1 dargestellte Struktur für den
Lloyd-Algorithmus.
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2.1. Der Lloyd-Algorithmus

Algorithmus 2.1 Hauptschleife des Lloyd-Algorithmus.
1: selectInitialCenters()
2: Jnew ←∞
3: repeat
4: J ← Jnew
5: assignPointsToCluster()
6: moveCenters()
7: Jnew ← getBadness()
8: until Jnew ≥ J

Algorithmus 2.2 Berechnung der Zielfunktion des Lloyd-Algorithmus.
1: function getBadness
2: J ← 0
3: for all c ∈ C do
4: for all p ∈ A(c) do
5: J ← J + d(p, c)2
6: end for
7: end for
8: return J
9: end function

Algorithmus 2.3 Zuordnung der Datenpunkte beim Lloyd-Algorithmus.
1: procedure assignPointsToCluster
2: for all p ∈ P do
3: nearest← ⊥
4: nearest_dist←∞
5: for all c ∈ C do
6: dist← d(p, c)
7: if dist < nearest_dist then
8: nearest← c
9: nearest_dist← dist

10: end if
11: end for
12: assignPointToCluster(p, nearest)
13: end for
14: end procedure

5



Kapitel 2. Das k-means-Problem

2.1.1. Zuordnung der Datenpunkte

In diesem Schritt werden für alle Datenpunkte die jeweils nächstgelegenen Clus-
terzentren ermittelt. Dazu ist es notwendig, für jeden Datenpunkt die Distanz
zu jedem Clusterzentrum zu berechnen. Anschließend wird der Datenpunkt
dem Zentrum mit der geringsten Distanz zugeordnet.

Dadurch, dass über alle Datenpunkte und Clusterzentren iteriert wird (Al-
gorithmus 2.3), entsteht eine Laufzeitkomplexität von Θ(k ·N) mit genau so
vielen Distanzberechnungen.

2.1.2. Verschiebung der Clusterzentren

Nachdem die Neuzuordnung der Datenpunkte abgeschlossen ist, wird die Positi-
on der Clusterzentren korrigiert. Um die Summe der quadratischen euklidischen
Distanzen innerhalb eines Clusters und somit auch die globale Fehlersumme
zu minimieren, muss die Position des Clusterzentrums in den geometrischen
Schwerpunkt (englisch „Centroid“) des Clusters verschoben werden [Gz].

Falls der Algorithmus noch nicht konvergiert ist, führt diese Verschiebung
dazu, dass Datenpunkte sich nun näher an einem anderen als ihrem bisher
zugeordneten Clusterzentrum befinden. Die erste Phase, die Zuordnung der
Datenpunkte, muss daher erneut durchgeführt werden.

2.1.3. Konvergenz

Da die Anzahl der möglichen Zustände durch die Anzahl der Cluster (k) und die
Anzahl der Datenpunkte (N) auf die Stirling-Zahl zweiter Art SN,k

1 beschränkt
ist, konvergiert der Lloyd-Algorithmus in endlicher Zeit.

Darüber hinaus ist leicht zu sehen, dass beide Phasen jeweils monoton die
Zielfunktion verringern: Die Zuordnung eines Punktes zum nächstgelegenen
Zentrum minimiert die (quadratische) Distanz für den Punkt. Die Verschiebung
des Clusterzentrums in den Schwerpunkt minimiert die Summe der quadra-
tischen Distanzen innerhalb des Clusters. Die Zielfunktion ist nicht-negativ,
die monotone Verringerung dieser führt daher ebenfalls zwangsläufig zu einer
Konvergenz in endlicher Zeit.

1Die Stirling-Zahl zweiter Art gibt an, auf wie viele Arten eine n-elementige Menge in k
nicht-leere, disjunkte Teilmengen aufgeteilt werden kann: Sn,k = 1

k!

∑k
j=1(−1)k−j

(
k
j

)
jn.
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2.1. Der Lloyd-Algorithmus

2.1.4. Beispiel

In Abbildung 2.1 findet sich ein beispielhafter Verlauf von k-means-Clustering
mit Hilfe des Lloyd-Algorithmus für einen simplen Datensatz mit 14 Daten-
punkten. Diese sind in drei natürliche, konvexe und etwa gleich große Cluster
aufgeteilt und die Anzahl der gewünschten Clusterzentren ist als k = 3 gewählt.
Es ist daher zu erwarten, dass die finalen Positionen der Clusterzentren genau
in den natürlichen Clustern liegen.

Dies ist nach drei Iterationen der Fall. In Iteration 3 hat keine Neuzuordnung
stattgefunden (es gibt keinen blau markierten Datenpunkt), daher terminiert
der Algorithmus.

0 2 4 6
0

2

4

6

(a) Ausgangssituation

0 2 4 6
0

2

4

6

(b) Nach Iteration 1.

0 2 4 6
0

2

4

6

(c) Nach Iteration 2.

0 2 4 6
0

2

4

6

(d) Nach Iteration 3.

Abbildung 2.1.: Die aktuellen Clusterzentren sind rot markiert. Zu Beginn liegen sie
genau auf drei Datenpunkten. Die blau markierten Datenpunkte
haben nach der Verschiebung der Clusterzentren in der jeweiligen
Iteration ihre Zuordnung geändert.
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Kapitel 2. Das k-means-Problem

2.1.5. Initialisierung

Die Auswahl der initialen Clusterzentren hat einen entscheidenden Einfluss auf
die Qualität des resultierenden Clusterings und auf die Anzahl der benötigten
Iterationen bis zur Konvergenz.

Abbildung 2.2 zeigt beispielhaft den Einfluss der Initialisierung auf die
Qualität des Ergebnisses. Die Datenpunkte liegen in diesem Beispiel auf den
Eckpunkten eines Rechtecks. Abhängig von der Initialisierung liegen die resul-
tierenden Clusterzentren entweder auf den Mittelpunkten der langen Seiten
(lokales Minimum) oder auf den Mittelpunkten der kurzen Seiten (globales
Minimum).

Eine Initialisierung, die als initiale Clusterzentren Punkte auswählt, die nah
an der konvergierten Position des Zentrums liegen, reduziert die Anzahl der
benötigten Iterationen. Eine Veranschaulichung findet sich in Abbildung 2.3.
In 2.3a wurden beide initialen Clusterzentren im gleichen natürlichen Cluster
platziert. Dies führt dazu, dass die Grenze der beiden Voronoi-Zellen den linken
Cluster teilt. Diese fehlerhafte Zuordnung kann erst in der dritten Iteration
vollständig korrigiert werden.

Beide Zielsetzungen korrelieren miteinander. Eine Auswahl von initialen
Clusterzentren, die die Wahrscheinlichkeit eines „schlechten“ lokalen Minimums
verringert, führt dazu, dass sich die Zentren bereits im Bereich eines möglichen
Zielclusters und damit in der Nähe ihrer endgültigen Position befinden.

Das in dieser Arbeit genutzte Initialisierungsverfahren k-means++ wird in
Abschnitt 3.1 näher vorgestellt.

2.1.6. Einschränkungen und Probleme

Die Einfachheit des k-means-Problems und des Lloyd-Algorithmus bringt einige
Einschränkungen und Probleme mit sich. Einige Einschränkungen sind inherent
mit dem k-means-Problem verknüpft (etwa „arithmetisches Mittel notwendig“),
andere sind in der Konstruktion des Lloyd-Algorithmus zu verorten (etwa
„Leere Cluster können entstehen“).

Arithmetisches Mittel notwendig

Das k-means-Problem setzt die Existenz des namensgebenden arithmetischen
Mittels beziehungsweise der euklidischen Distanz voraus. Dadurch sind die

8



2.1. Der Lloyd-Algorithmus

−2 0 2

−2

0

2

(a) Konvergiert zu (0, 1) und (0,−1).

−2 0 2

−2

0

2

(b) Konvergiert zu (−2, 0) und (2, 0).

Abbildung 2.2.: Abhängig von der Initialisierung erreicht die Zielfunktion bei diesen
Datenpunkten entweder 4 · 22 = 16 oder 4 · 12 = 4. Die „rot“en
Punkte stellen die als initiale Clusterzentren gewählten Punkte
dar.

−5 0 5

−4

−2

0

2

4

(a) Benötigt drei Iterationen zur Kon-
vergenz.

−5 0 5

−4

−2

0

2

4

(b) Benötigt eine Iteration zur Kon-
vergenz.

Abbildung 2.3.: In beiden Fällen konvergiert der Algorithmus zum gleichen Er-
gebnis (−3.5, 0) und (3.5, 0). Im ersten Fall werden aber zwei
zusätzliche Iterationen benötigt, da der Großteil der Punkte des
linken Clusters zunächst dem rechten Cluster zugeordnet wird. Die
Grenze der Voronoi-Zerlegung ist mit einer Linie gekennzeichnet.
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Kapitel 2. Das k-means-Problem

Datenpunkte auf numerische Werte beschränkt, ein Clustering von nicht-
numerischen Daten ist nicht möglich.

Clustermodell

Bedingt dadurch, dass das k-means-Problem die Cluster durch einen Stell-
vertreter, das Clusterzentrum, beschreibt und die Clusterzugehörigkeit von
der Distanz zu diesem Stellvertreter statt der Distanz zum nächstgelegenen
Datenpunkt abhängig macht, ist die Lösung des k-means-Problems stets eine
Menge von konvexen Clustern (Abbildung 2.4a).

Darüber hinaus führt dies dazu, dass bei starken Größenunterschieden geo-
metrisch benachbarter Cluster die Randpunkte des größeren Clusters aufgrund
der hohen Distanz zum Clusterzentrum des größeren Clusters dem kleineren,
aber dennoch deutlich separierten Cluster zugeordnet werden (Abbildung 2.4b).

Ausreißer

Ein weiterer Effekt des verwendeten Clustermodells ist die fehlende Behandlung
von Ausreißern. Jeder Punkt wird einem Cluster zugeordnet und nimmt an
der Berechnung des Clusterzentrums teil. In Abbildung 2.5 ist beispielhaft
dargestellt, wie Ausreißer das Ergebnis verändern können.

k muss bekannt sein

Eine weitere Einschränkung, die sich aus der fehlenden Berücksichtigung der
intra-Cluster-Distanzen ergibt, ist, dass die Anzahl der gewünschten Cluster
k explizit als Eingabewert übergeben werden muss. Eine Lösung für diese
Problematik ist es, den Algorithmus iterativ mit steigendem k durchzuführen,
bis die Verbesserung der Zielfunktion J abflacht (Abbildung 2.6). An diesem
Punkt ist es sehr wahrscheinlich, dass ein großer natürlicher Cluster in zwei
kleinere Cluster aufgeteilt wurde und keine weiteren natürlichen Cluster mehr
gefunden werden. Alternativ kann für jedes resultierende Clustering der Sil-
houettenkoeffizient berechnet werden. Dieser ist in der Berechnung deutlich
aufwändiger. Distanzen müssen von jeden Datenpunkt zu jedem anderen Da-
tenpunkt berechnet werden. Für weniger klar separierte natürliche Cluster ist
dieser aber genauer als die Betrachtung der k-means-Zielfunktion.
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2.1. Der Lloyd-Algorithmus

0 2 4

0

2

4

6

(a) Für die beiden Cluster lässt sich
keine Trenngerade finden.

4 6

2

3

4

5

(b) Das Zentrum des kleineren Clus-
ters ist weniger als der Durchmes-
ser des größeren Clusters von des-
sen Randpunkten entfernt.

Abbildung 2.4.: In beiden Fällen sind die Cluster optisch klar voneinander separiert.
Die Lösung des k-means-Problems sind aber nicht die natürlichen
Cluster.

5 10

5

10

(a) Ohne Ausreißer.

5 10

5

10

(b) Mit Ausreißern.

Abbildung 2.5.: Die Ausreißer führen dazu, dass das rechte Clusterzentrum sich
außerhalb des Clusters befindet. Der „blau“ markierte Punkt an
der Clustergrenze wird daher falsch zugeordnet.
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(a) Fehler in Abhängigkeit der
Clusteranzahl k.

1 15 30

1012

1014

k

∆
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(b) Verbesserung des Fehlers im
Vergleich zum vorherigen k.

Abbildung 2.6.: Fehler beim Clustering des s1-Datensatzes (Seite 56) für steigen-
de k. Ein Abflachen bei k = 15 ist deutlich zu erkennen und
spiegelt sich auch in der Verbesserung des Fehlers wieder.

Leere Cluster können entstehen

Als Folge des vorzugebenden k ist es bei einer schlechten Wahl und ungünstiger
Initialisierung möglich, dass ein Clusterzentrum im Laufe des Algorithmus
für keinen Punkt das nächstgelegene Zentrum ist und daher einen leeren
Cluster repräsentiert. Bei der Verschiebung in den Schwerpunkt dieses leeren
Clusters kommt es zu einer Division durch 0. Als Lösung könnten betroffene
Clusterzentren auf einen zufällig gewählten Datenpunkt gesetzt werden. Dies
reduziert in jedem Falle die Zielfunktion, da die quadratische Distanz von
diesem Datenpunkt zu seinem nächstgelegenen Zentrum den Wert 0 annimmt.

Ein Beispiel findet sich in Abbildung 2.7. Die Datenpunkte bilden entweder
zwei oder vier natürliche Cluster, abhängig davon, ob die drei rechten Punkte

0 2 4

0

2

4

(a) Vor der 1. Iteration.

0 2 4

0

2

4

(b) Nach der 1. Iteration.

Abbildung 2.7.: Nach der 1. Iteration wird dem mittleren Clusterzentrum kein
Punkt mehr zugeordnet.
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jeweils einen Cluster bilden oder nicht. Es wurde aber k = 3 gewählt und zwei
der initialen Clusterzentren befinden sich im linken Cluster. Dies führt nach der
ersten Iteration dazu, dass ein Clusterzentrum genau zwischen allen Punkten
liegt und daher von jedem Punkt zu weit entfernt ist.

2.2. Die Optimierung

Der unveränderte Lloyd-Algorithmus führt in der in Abschnitt 2.1.1 vorge-
stellten Zuordnungsphase viele redundante Distanzberechnungen durch. Ein
Datenpunkt, der eine geringe Entfernung zu seinem derzeit zugeordneten Clus-
terzentrum besitzt, wird in der nächsten Zuordnungsphase in der Regel nicht
neu zugeordnet, sondern ist weiterhin näher an seinem derzeit zugeordneten
Zentrum, verglichen mit allen anderen Zentren.

Wenn sich Clusterzentren mit geringem Zusatzaufwand ausschließen („pru-
nen“) lassen, können, potentiell teure, Distanzberechnungen eingespart werden.

Definition 1 (Pruning)
Mit „Pruning“ wird die Möglichkeit bezeichnet, ohne exakte Distanzberech-
nungen zu bestimmen, ob ein Clusterzentrums potentiell das einem Punkt
nächstgelegene ist.

Allen in dieser Arbeit untersuchten Algorithmen ist gemein, dass sie schran-
kenbasiert prunen und exakt sind. Wir möchten diese beiden Eigenschaften
definieren.

Definition 2 (Schrankenbasierter Algorithmus)
Ein schrankenbasierter Algorithmus pruned Clusterzentren auf Basis

• einer oberen Schranke der Entfernung zum nächstgelegenen Clusterzen-
trum

• einer Menge von unteren Schranken, die Aussagen über die Entfernung
zu anderen Clusterzentren treffen

• und gegebenenfalls zusätzlichen Informationen, die in Verbindung mit
den Schranken ein Pruningkriterium herleiten.

Schrankenbasierte Algorithmen bieten den Vorteil, dass diese für die Spei-
cherung der zusätzlichen Informationen simple Datenstrukturen nutzen kön-

13



Kapitel 2. Das k-means-Problem

nen. Eine obere Schranke pro Datenpunkt könnte effizient durch ein lineares
Feld2 von Distanzwerten repräsentiert werden. Darüber sind schrankenbasierte
Indexstrukturen weniger stark als Bäume vom „Fluch der Dimensionalität“
betroffen [Elk03, Abschnitt 6; Ham10, Abschnitt 2.2].

Eine nicht-schrankenbasierte exakte k-means-Variante auf Basis von kd-
Bäumen wurde in [Kan+02] vorgestellt.

Definition 3 (Exakter Algorithmus)
Ein exakter Algorithmus liefert nach jeder Iteration die gleichen Positionen der
Clusterzentren wie der Lloyd-Algorithmus.

Exakte Algorithmen bieten den Vorteil, dass diese die erprobten Eigen-
schaften des Lloyd-Algorithmus beibehalten. Anwendungen, die Wert auf die
bewährte Qualität der Ergebnisse des Lloyd-Algorithmus legen, können auf
diese Weise beschleunigt werden, ohne Gefahr zu laufen, dass die Ergebnis-
se des Clusterings fehlerhaft oder von unzureichender Genauigkeit sind. Es
muss keine langwierige Prüfung des Algorithmus auf Praxistauglichkeit für den
gewünschten Einsatzzweck durchgeführt werden.

Im Gegensatz zu exakten Algorithmen stehen beispielsweise das probabilis-
tische Mini-batch k-means, das bei jeder Iteration nur einen kleinen Teil der
Datenpunkte auswählt [Scu10], und Recursive Partition Based K-Means, das
die Datenpunkte in immer kleinere Partitionen aufteilt und die Ergebnisse der
vorherigen Iteration als Startwert für die nächste Iteration verwendet [CPL17].

2.3. Abgrenzung zu anderen
Clustering-Verfahren

Neben den beschleunigten k-means-Varianten im vorherigen Abschnitt möch-
ten wir an dieser Stelle noch einige andere Algorithmen zum Clustering von
Datensätzen nennen und die Unterschiede zu k-means kurz herausstellen.

k-median

Der k-median [BMS96] kann als Variante von k-means, bei dem die verwen-
dete Distanz in der Zielfunktion nicht die quadratierte euklidische Distanz,

2Auch bezeichnet als Array oder Vektor.
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2.3. Abgrenzung zu anderen Clustering-Verfahren

sondern die Manhattan-Distanz ist, aufgefasst werden. Statt durch eine Ver-
schiebung in den geometrischen Schwerpunkt wird diese durch Auswahl des
komponentenweisen (geometrischen) Medians minimiert.

Entsprechend kann der k-median auch dann verwendet werden, wenn die
Bildung eines arithmetischen Mittels nicht, der Median und die Manhattan-
Distanz aber berechnet werden können. Ein weiterer Vorteil ist die Robustheit
des Median gegenüber Ausreißern. In geringer Anzahl ist die Beeinflussung der
Position der Clusterzentren zu vernachlässigen. Dem gegenüber steht die erhöhte
Komplexität bei der Berechnung des Medians. Als holistische Funktion kann
dieser im Gegensatz zum algebraischen arithmetischen Mittel nicht inkrementell
und schwieriger parallel berechnet werden.

Da der Großteil der in dieser Arbeit vorgestellten Optimierungen rein auf die
Eigenschaften einer Metrik aufbaut3 und der k-median lediglich die Distanz-
funktion austauscht, können diese auf den k-median angewendet und dieser
analog beschleunigt werden.

Partitioning Around Medoids

Der auch als k-medoid bezeichnete, in [KJ09, Kapitel 2] vorgestellte, Partitioning
Around Medoids (PAM) ermittelt analog zu k-means und k-median k durch
Clusterzentren repräsentierte Cluster. Das Clustermodell entspricht dem Clus-
termodell des k-means. Als Zielfunktion wird die Summe der Distanzen von
allen Punkten zu ihrem nächstgelegenen Clusterzentrum verwendet.

Genau wie beim k-means werden die Datenpunkte in jeder Iteration ihrem
jeweils nächstgelegenen Clusterzentrum zugeordnet. Die Aktualisierung der
Clusterzentren unterscheidet sich aber deutlich: Jedes Clusterzentrum wird mit
einem diesem Clusterzentrum zugeordneten Datenpunkt so vertauscht, dass
die Zielfunktion minimiert wird.

Daraus folgt unmittelbar, dass die einzige an die Datenpunkte gestellte
Anforderung ist, dass eine Distanzfunktion existiert. Dadurch kann PAM für
beliebige Daten eingesetzt werden. Es entsteht aber eine im Vergleich zum
k-means deutlich erhöhte Laufzeitkomplexität.

3Einige Optimierungen beschleunigen die Neuberechnung des Clusterzentrums und sind
daher nicht anwendbar.
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Density-based spatial clustering of applications with
noise

Ein Clusteringalgorithmus, der es nicht erfordert, dass die Anzahl der Clus-
ter vorgegeben wird ist der Density-based spatial clustering of applications
with noise (DBSCAN) [Est+96]. Dieser ermittelt auf Basis einer als Einga-
be übergebenen maximalen Distanz („dichtebasiert“) zu den nächstgelegenen
Datenpunkten selbstständig die Clusterzugehörigkeiten, bis alle Datenpunkte
entweder einem Cluster zugeordnet oder als Ausreißer ausgeschlossen wurden.
Auf diese Weise ist DBSCAN von keiner der in Abschnitt 2.1.6 genannten
Probleme und Einschränkungen betroffen.

Aufgrund dieser Funktionsweise besitzt der DBSCAN im Vergleich zum k-
means und auch PAM eine erhöhte Laufzeitkomplexität. Distanzen müssen
nicht nur zu Clusterzentren oder Punkten innerhalb eines Clusters, sondern
potentiell zu jedem anderen Datenpunkt berechnet werden.
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3
Beschleunigung von k-means

Nachdem in Kapitel 2 die grundsätzliche Funktionsweise des Lloyd-Algorithmus
zur Lösung des k-means-Problems hinreichend erläutert wurde, soll in den
Abschnitten 3.1 bis 3.5 die Funktionsweise der Einzelkomponenten schrankenba-
sierter exakter k-means-Algorithmen vorgestellt werden. Anschließend wird in
Abschnitt 3.6 diskutiert, wie diese Einzelkomponenten in konkret benennbaren
Algorithmen zum Einsatz kommen.

3.1. Initialisierung

Wie in Abschnitt 2.1.5 bereits untersucht, ist die Initialisierung von hoher
Wichtigkeit für die Qualität des Ergebnisses, sowie für die Anzahl der benötigten
Iterationen und somit die Laufzeit des Clusterings. Ein populäres Verfahren,
das nach aktuellem Kenntnisstand eine überdurchschnittlich gute Initialisierung
liefert, ist k-means++, vorgestellt in [AV07]. [CKV12] empfiehlt unter anderem
die Verwendung von „Greedy k-means++“, einer k-means++-Variante, die den
Worst Case von k-means++ verbessern soll.

Da alle in dieser Arbeit betrachteten Algorithmen exakte Algorithmen sind,
hat die Initialisierung auf alle Algorithmen den gleichen Einfluss. Wir stellen
in dieser Arbeit daher nur den unmodifizierten k-means++-Algorithmus vor.

k-means++ ist ein probabilistischer Algorithmus. Nach der Auswahl eines
zufälligen ersten Clusterzentrums werden alle weiteren Clusterzentren mit einer
Wahrscheinlichkeit proportional zu ihrer quadratischen Distanz zum nächst-
gelegenen, bereits ausgewählten Clusterzentrum ausgewählt. Dieses Verfahren
führt dazu, dass Punkte in möglichst weit entfernten Clustern ausgewählt
werden, ohne dass die Auswahl auf einen Ausreißer fällt. Letztere besitzen zwar
eine hohe Distanz zu anderen Datenpunkten, dies wird aber durch die höhere
Anzahl an Punkten innerhalb der natürlichen Cluster ausgeglichen, sodass jeder
Punkt eines Clusters für sich genommen zwar eine niedrige Chance zur Auswahl
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Kapitel 3. Beschleunigung von k-means

hat, der Cluster in Summe aber eine hohe. Ein Beispiel dafür findet sich in
Abbildung 3.1.

Insgesamt vermeidet k-means++ es auf diese Weise, mehrere initiale Cluster-
zentren im selben natürlichen Cluster auszuwählen. Diese müssten anschließend
aufwändig aufgetrennt werden (Abbildung 2.3), was abhängig von der geo-
metrischen Beschaffenheit nicht immer gelingt und dadurch die Qualität des
Ergebnisses mindert. Abbildung 3.2 zeigt dies beispielhaft. Die Anzahl der
zu findenden Cluster k entspricht genau der Anzahl der natürlichen Cluster.
Dadurch, dass alle initialen Cluster aus dem natürlichen Cluster um (0, 0)

gewählt wurden, konnten die Cluster nicht sauber aufgetrennt werden.
Stattdessen werden die initialen Clusterzentren mit hoher Wahrscheinlichkeit

in ihren Zielclustern platziert, sodass bei klar separierten natürlichen Clustern
lediglich die Verschiebung in den Schwerpunkt von Nöten ist.

k-means++ verbessert auf diese Weise sowohl die Qualität des Ergebnisses2

als auch die benötigte Laufzeit.

3.2. Schranken

Grundlage der Beschleunigung von k-means durch Schranken sind die drei
Eigenschaften einer metrischen Distanzfunktion (d), insbesondere der Dreiecks-
ungleichung (3.3).

Definition 4 (Metrische Distanzfunktion und Dreiecksungleichung)
Folgende Gleichungen gelten für eine metrische Distanzfunktion d(·, ·):

d(x, y) ≥ 0 ∧ d(x, y) ⇐⇒ x = y (3.1)

d(x, y) = d(y, x) (3.2)

d(x, z) ≤ d(x, y) + d(y, z) (3.3)

Die Dreiecksungleichung erlaubt es bei Kenntnis der Distanzen von zwei
Punkten x und z zu einem gemeinsamen Punkt y Aussagen über die Distanz
zwischen x und z zu treffen.

14 · 1 + 4 · 2 + 10.25 + 13 + 16.25 + 15.25 + 29.25
2[AV07] beweist, dass die Zielfunktion J des für das resultierende Clustering innerhalb von
O(log k) des optimalen Clusterings liegt.
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Abbildung 3.1.: Der rot markierte Punkt ist bereits ausgewählt. Die Summe der
quadratischen Distanzen beträgt 961. Mit einer Wahrscheinlichkeit
von 54.75

96 ≈ 57% wird ein Punkt im unteren Cluster ausgewählt,
mit einer Wahrscheinlichkeit von 12

96 ≈ 13% ein Punkt im gleichen
Cluster und mit einer Wahrscheinlichkeit von 29.25

96 ≈ 30% der
blau markierte Ausreißer.
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Abbildung 3.2.: Durch Auswahl aller initialen Clusterzentren im Cluster bei (0, 0)
nicht weiter auftrennbare Cluster.
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Kapitel 3. Beschleunigung von k-means

In Verbindung mit der Annahme, dass Datenpunkte, insbesondere bei zu-
nehmender Anzahl an Iterationen, nicht neu zugeordnet werden [Kan+00,
Abschnitt 5; KFN00, Abschnitt IV] ist dies oftmals ausreichend, um zu ermit-
teln, ob ein Punkt potentiell neu zugeordnet werden muss.

Dazu lässt sich die Annahme in zwei Teilannahmen zerlegen:

1. Die Clusterzentren bewegen sich nur wenig.

2. Die Distanz von einem Datenpunkt zu seinem zugeordneten (und somit
nächsten) Clusterzentrum ist deutlich kleiner als die Distanz zu dem
zweitnächsten Clusterzentrum.

Die erste Annahme wird mit zunehmender Anzahl an Iterationen ausge-
prägter, da sich die Clusterzentren dann bereits nahe an ihrer Zielposition
befinden [Kan+00, Abschnitt 3]. Wenn keine Veränderung in einem Cluster
stattfindet, dann bewegt sich das Clusterzentrum gar nicht.

Definition 5 (Statische und aktive Cluster)
Ein statischer Cluster ist ein Cluster, dessen Menge von zugeordneten Punkten
(A(c)) sich in der aktuellen Iteration nicht geändert hat. Dem gegenüber steht
ein aktiver Cluster, dessen Menge von zugeordneten Punkten sich geändert hat.

In [KFN00] waren in späteren Iterationen bis zu 80 % der Cluster statische
Cluster. Eine Verletzung der Annahme ergibt sich, wenn die Bewegung dazu
führt, dass weit entfernte Punkte einem Cluster neu zugeordnet werden, also
die zweite Teilannahme verletzt wird.

Die zweite Annahme verlangt klar separierte natürliche Cluster, also dass die
intra-Cluster-Distanzen deutlich kleiner als die inter-Cluster-Distanzen sind. In
diesem Fall gibt es nur wenige Punkte nahe den Grenzen der Voronoi-Zellen,
die bei der Verschiebung der Clusterzentren ihre Zuordnung ändern könnten.
Das Zutreffen dieser Annahme ist daher abhängig von dem zu clusternden
Datensatz.

Falls die erste Teilannahme zutreffend ist, erlauben es die namensgebenden
Schranken, die Distanzen zwischen Datenpunkten und Clusterzentren mit einem
geringen Fehler zu approximieren. Die Details dieser Approximierung werden
in Abschnitt 3.2.1 diskutiert.

Falls die zweite Teilannahme zutreffend ist, erlaubt es ein simpler Vergleich
zwischen den approximierten Schranken für einen Großteil der Punkte zu
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ermitteln, dass diese ihre Zuordnung nicht ändern. Dies führt zu unserem ersten
Pruningkriterium:

Pruningkriterium 1 (Vergleich von unterer und oberer Schranke)
Wenn eine untere Schranke für die Distanz zwischen Datenpunkt und Cluster-
zentrum (A) eine obere Schranke für die Distanz zwischen Datenpunkt und
einem anderen Clusterzentrum (B) überschreitet, dann muss Clusterzentrum
A weiter vom Datenpunkt entfernt sein als Clusterzentrum B. Insbesonde-
re kann Clusterzentrum A nicht das dem Datenpunkt am nächsten gelegene
Clusterzentrum sein.

Im Sinne der besseren Verständlichkeit soll an dieser Stelle noch die inverse
Dreiecksungleichung (3.4) zur Verwendung in späteren Abschnitten definiert
werden.

Definition 6 (Inverse Dreiecksungleichung)
Die inverse Dreiecksungleichung folgt durch einfaches Umformen aus der Drei-
ecksungleichung (3.3):

d(x, y) ≤ d(x, z) + d(z, y)

⇐⇒ d(x, y)− d(z, y) ≤ d(x, z)

⇐⇒ d(x, y)− d(y, z) ≤ d(x, z)

⇐⇒ d(x, z) ≥ d(x, y)− d(y, z)

(3.4)

3.2.1. Aktualisierung der Schranken

Bevor die einzelnen Schranken vorgestellt werden, soll zunächst diskutiert
werden, auf welche Weise die tatsächlichen Distanzen durch Schranken approxi-
miert werden und was für einen Einfluss die Art der Approximierung hat, da
dies für das Verständnis der Unterschiede zwischen den und der Leistung der
unterschiedlichen unteren Schranken essentiell ist.

Neben Anzahl und Art unterscheidet sich insbesondere auch der Zeitpunkt
der Aktualisierung der Schranken je nach Algorithmus. Allen Algorithmen ist
aber gemein, dass es nach der Verschiebung der Clusterzentren in der zweiten
Phase notwendig ist, alle gespeicherten Schranken zu aktualisieren, damit die
Invarianten der Schranken gültig bleiben. Eine scharfe obere Schranke würde
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Kapitel 3. Beschleunigung von k-means

beispielsweise verletzt, wenn sich das Clusterzentrum von einem Datenpunkt
entfernt.

Rein mit Hilfe der Eigenschaften der Distanzfunktion, insbesondere der Drei-
ecksungleichung, kann keine Aussage über die Bewegungsrichtung relativ zu
dem Datenpunkt beziehungsweise den Datenpunkten, auf die sich eine Schranke
bezieht, getroffen werden. Die Dreiecksungleichung garantiert lediglich, dass
die Distanz zum Datenpunkt sich nicht um mehr als die zurückgelegte Distanz
geändert haben kann. Dies folgt durch einfaches Einsetzen in die Dreiecksun-
gleichung (3.3) beziehungsweise die inverse Dreiecksungleichung (3.4):

d(p, cnew) ≤ d(p, cold) + d(cold, cnew) (3.5)

d(p, cnew) ≥ d(p, cold)− d(cold, cnew) (3.6)

Aus diesem Grunde ist es bei der Aktualisierung typischerweise notwendig, die
zurückgelegte Distanz „pessimistisch“ auf die oberen Schranken zu addieren,
beziehungsweise von den unteren Schranken zu subtrahieren, um sicher zu
stellen, dass die Schrankeninvariante nicht verletzt wird.

In [RH] werden zusätzliche geometrische Eigenschaften genutzt, die eine
Aktualisierung erlauben, die präziser als die pessimistische Aktualisierung ist.
Diese Eigenschaften sollen aber nicht Bestandteil dieser Arbeit sein.

Da die Schranken nach jeder Verschiebung der Clusterzentren um die zu-
rückgelegte Distanz aktualisiert werden, summiert sich der Fehler durch die
„pessimistische“ Annahme auf, wenn die Schranke zwischenzeitlich nicht durch
eine notwendige exakte Distanzberechnung scharf aktualisiert werden kann.
Diese Art der Aktualisierung wird daher als „Sum of Norms“, Summe der
Bewegungen, bezeichnet.

Insbesondere dann, wenn ein Clusterzentrum sich auf einer elliptischen Bahn
um einen Punkt bewegt, führt diese Art der Aktualisierung dazu, dass ein
großer aufsummierter Fehler entsteht, obwohl sich das Zentrum seit der letzten
exakten Aktualisierung der Schranke nur wenig bewegt hat. Es wird also die
erste Annahme aus Abschnitt 3.2 verletzt. In [NF16] wird daher eine alternative
Aktualisierung vorgeschlagen, die ebenfalls rein auf den Eigenschaften der
Dreiecksungleichung aufbaut. Diese wird in Abschnitt 3.4.1 näher vorgestellt.
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3.2. Schranken

3.2.2. Obere Schranke

Als Vergleichswert in jedem der Pruningkriterien wird die Distanz zwischen
einem Datenpunkt und dem bislang zugeordneten Clusterzentrum benötigt.
Schließlich ist diese Distanz die Distanz, die es für eine Neuzuweisung zu
unterschreiten gilt.

Anstelle diese Distanz in jedem Zuweisungsschritt erneut zu berechnen,
bietet es sich an, diese durch eine obere Schranke zu approximieren. In jeder
Iteration, in der die obere Schranke ausreichend präzise ist, um ein Pruning zu
ermöglichen, kann so eine Distanzberechnung eingespart werden.

Für die Speicherung der oberen Schranke entsteht ein zusätzlicher linearer
Speicherbedarf in der Anzahl der Datenpunkte: Θ(N). Für jeden Datenpunkt
muss eine Distanz3 gespeichert werden.

3.2.3. Untere Schranke

Neben einer oberen Schranke für das nächstgelegene Clusterzentrum setzen alle
Algorithmen auf untere Schranken für die Distanzen zu den anderen Cluster-
zentren. Die untere Schranke ist der essentielle Aspekt bei der Beschleunigung.
Der Großteil der Rechenzeit des Lloyd-Algorithmus wird für die (redundante)
Berechnung der Distanzen zu den Clusterzentren aufgewendet. Um diese Berech-
nungen einzusparen, müssen entsprechend Informationen über diese Distanzen
effizient vorgehalten werden.

Im Gegensatz zu der oberen Schranke gibt es hier durch die größere Anzahl
an Clusterzentren drei grundsätzliche Alternativen der Ausgestaltung. Diese
benennen wir nach dem (primären) Autor des Algorithmus, in denen die
jeweilige Alternative vorgestellt wurde.

Elkan „k“

Der von Charles Elkan in [Elk03] vorgestellte „Elkan-Algorithmus“ speichert
pro Datenpunkt und Clusterzentrum eine untere Schranke der Distanz. Diese
untere Schranke bezieht sich ausschließlich auf das Paar und ist diesem fest
zugeordnet.

Auf diese Weise erlaubt die Schranke mit Hilfe von Pruningkriterium 1 eine
feingranulare Entscheidung, ob ein spezifisches Clusterzentrum ein potentiell

3Beispielsweise eine 64-bit double precision IEEE 754-Gleitkommazahl.
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Abbildung 3.3.: (Scharfe) untere Schranken des Elkan. Die Clusterzentren müssen
weiter als der Kreisradius von den Punkten entfernt sein. Die
Abstandsvektoren für den Punkt q wurden im Sinne der Lesbarkeit
ausgelassen.

nächstgelegenes Clusterzentrum ist oder nicht. Darüber hinaus kann die Schran-
ke immer dann scharf aktualisiert werden, wenn eine exakte Distanzberechnung
zwischen Datenpunkt und Clusterzentrum durchgeführt wird. Die Aktualisie-
rung nach der Verschiebung der Clusterzentren (Abschnitt 3.2.1) verwendet
das Delta des zugeordneten Clusterzentrums.

Die unteren Schranken des Elkan benötigen einen zusätzlichen Speicher
in Höhe von Θ(N · k), es wird eine Distanz pro Paar aus Datenpunkt und
Clusterzentrum gespeichert.

Hamerly „1“

Im von Greg Hamerly in [Ham10] vorgestellten „Hamerly-Algorithmus“ wird
pro Datenpunkt genau eine untere Schranke gespeichert. Dies soll den größten
Nachteil des Elkan, die hohe Anzahl der unteren Schranken und den damit
verbundenen hohen Speicherbedarf und hohen Aufwand bei der Korrektur der
Schranken verbessern.

Diese repräsentiert die Distanz zum zweitnächsten Clusterzentrum. Mit Hilfe
von Pruningkriterium 1 können auf diese Weise mit einer Prüfung potentiell alle
Clusterzentren ausgeschlossen und somit alle Distanzberechnungen eingespart
werden. Wenn dies nicht möglich ist, ist es, sofern kein anderes Pruningkriterium
greift, hingegen notwendig, dass für alle Clusterzentren eine exakte Distanz
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Abbildung 3.4.: (Scharfe) untere Schranke des Hamerly. Die Clusterzentren müs-
sen weiter als der Kreisradius von den Punkten entfernt sein. c2
beziehungsweise c4 sind das nächstgelegene Clusterzentrum für p
beziehungsweise q und haben daher einen geringeren Abstand als
die scharfe untere Schranke.

berechnet wird. Nach dieser exakten Berechnung werden sowohl die obere als
auch die untere Schranke scharf aktualisiert. Um die Korrektheit der Schranke
nach der Verschiebung der Clusterzentren zu gewährleisten, wird diese um die
Clusterbewegung mit dem größten Betrag nach unten korrigiert. Eine große
Bewegung eines einzelnen Clusterzentrums („Big Mover“) hat dadurch einen
großen Einfluss auf die Pruning-Möglichkeiten aller Clusterzentren.

Definition 7 (Big Mover)
Als „Big Mover“ werden Clusterzentren bezeichnet, die im Vergleich zu den
durchschnittlichen inter-Cluster-Distanzen eine große Distanz zurücklegen und
somit einen großen Approximationsfehler bei der pessimistischen Aktualisierung
der Schranken verursachen.

Der Hamerly benötigt für seine untere Schranke einen Speicher von Θ(N)

zusätzlichen Distanzen.

Drake „1 ≤ b ≤ k“

Die untere Schranke in Drakes Algorithmus, vorgestellt von Jonathan Drake
und Greg Hamerly in [Dra12], lässt sich als Kombination von Elkan- und von
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Kapitel 3. Beschleunigung von k-means

Hamerly-Schranke auffassen4. Diese soll die Nachteile beider Algorithmen, den
hohen Overhead des Elkan und die Problematik der Big Mover des Hamerly,
vermeiden.

Der Drake verwendet b sortierte Schranken, die Anzahl wird über die Laufzeit
des Algorithmus variiert. Wie genau die Anzahl angepasst wird, wird im
Abschnitt 3.6.3 zum konkreten Algorithmus „Drake“ näher betrachtet.

Die ersten b − 1 dieser Schranken beziehen sich, wie die untere Schranke
des Elkan, auf jeweils ein konkretes Clusterzentrum, nämlich auf die b − 1

nächstgelegenen Clusterzentren, beginnend mit dem zweitnächsten. Die letzte
untere Schranke ist, wie die untere Schranke des Hamerly, eine gemeinsame
untere Schranke aller verbleibenden Clusterzentren.

Die Sortierung der Schranken reduziert den Aufwand beim Pruning. Ein
erfolgreiches Pruning mit Hilfe von Pruningkriterium 1 führt unmittelbar dazu,
dass auch alle verbleibenden Clusterzentren ausgeschlossen werden können.
Einerseits kann dadurch die Prüfung des Pruningkriteriums für eine Vielzahl von
Clusterzentren eingespart werden, wenn bereits eine der ersten Schranken ein
Pruning ermöglicht. Auf der anderen Seite ist es dadurch nicht notwendig, die
Clusterzentren der letzten (gemeinsamen) Schranke explizit zu speichern. Beim
Prüfen des Pruningkriteriums kann beispielsweise eine Datenstruktur mit allen
nicht-ausschließbaren Clusterzentren gefüllt werden. Wenn die letzte Schranke
ein Pruning erlaubt, dann ist keine weitere Berechnung notwendig. Wenn auch
die letzte Schranke kein Pruning erlaubt, dann sind alle Clusterzentren zu
prüfen und die erzeugte Datenstruktur kann mit der Liste aller Clusterzentren
ersetzt werden.

Für alle Clusterzentren, die nicht ausgeschlossen werden können, wird eine
exakte Distanzberechnung durchgeführt und die zugehörigen Schranken werden
scharf aktualisiert und neu sortiert.

Bei der Aktualisierung der Schranken nach der Bewegung der Clusterzentren
ist es möglich, dass ein weiter entferntes Clusterzentrum eine größere Bewegung
als ein näher gelegenes Clusterzentrum durchführt. Durch die pessimistische
Aktualisierung würde dadurch potentiell die Ordnung der Schranken verletzt.
Eine echte Sortierung der Schranken führt aufgrund der zusammengefassten
letzten Schranke potentiell zu Problemen. Es könnte passieren, dass diese
Schranke nach der Sortierung nicht mehr die letzte Schranke ist. Dies macht

4Beziehungsweise können umgekehrt Elkan- und Hamerly-Schranke als Spezialfall der
Drake-Schranke aufgefasst werden.
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Abbildung 3.5.: (Scharfe) untere Schranke des Drake für b = 3. Die letzte Schranke
bezieht sich jeweils auf alle verbleibenden Clusterzentren. Im Falle
von Datenpunkt p sind dies c6, c3 und c4. Für das nächstgelegene
Clusterzentrum wird keine untere Schranke gespeichert.

den Vorteil der Sortierung, das effiziente Pruning, zu nichte. Die Bewegungen der
Clusterzentren der ersten b− 1 Schranken müssten also mit den Bewegungen
der Clusterzentren der letzten Schranke verglichen und die Clusterzentren
möglicherweise ausgetauscht werden. Der Pflegeaufwand wäre deutlich erhöht.

Um dieses Problem zu umgehen, werden die Schranken bei der Aktualisie-
rung nicht sortiert, sondern auf ihre Nachfolgeschranke beschränkt. Eine weitere
Verringerung von unteren Schranken verletzt keine Invarianten, sondern macht
diese lediglich weniger scharf. Da die in der letzten Schranke zusammengefass-
ten Clusterzentren eine mutmaßlich große Distanz zu dem jeweiligen Punkt
besitzen, besteht auch im Falle von Big Movern unter diesen ein ausreichender
Sicherheitsabstand zu der oberen Schranke, wodurch das Pruningkriterium 1
im Vergleich zum Hamerly häufiger wirksam bleibt.

3.3. Weitere Pruningkriterien

Zusätzlich zum Vergleich von oberer und unterer Schranke verwenden die
Algorithmen weitere Informationen, die es bei bekannter oberer Schranke
erlauben, Clusterzentren zu prunen. Im Gegensatz zur unteren Schranke ist der
Pflegeaufwand für diese zusätzlichen Pruningkriterien nicht von der Anzahl der
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Kapitel 3. Beschleunigung von k-means

Datenpunkte abhängig. Die zusätzlichen Metadaten sind schnell zu ermitteln,
im Gegenzug sind die entstehenden Pruningkriterien weniger stark.

3.3.1. Center-Center-Distanzen

Neben der unteren Schranke werden in [Elk03] die Distanzen zwischen den Clus-
terzentren als weiteres Pruningkriterium verwendet. Dazu werden zu Beginn
jeder Iteration die paarweisen Distanzen aller Clusterzentren berechnet. Für
jedes Clusterzentrum wird die Distanz zum nächstgelegenen Clusterzentrum ge-
speichert. Mit diesen Informationen lässt sich Pruningkriterium 2 konstruieren.

Pruningkriterium 2 (Center-Center-Distanz)
Alle Clusterzentren c, deren halbe Distanz zu dem, einem Datenpunkt p nächst-
gelegenen, Clusterzentrum ap die obere Schranke u überschreitet, können aus-
geschlossen werden.

∀c ∈ C :
d(c, ap)

2
> u(p)

=⇒ c kann ausgeschlossen werden.
(3.7)

In der Praxis wird der Aufruf der Distanzfunktion einmalig zu Beginn der
Iteration und nicht pro Datenpunkt durchgeführt.

Eine beispielhafte Veranschaulichung findet sich in Abbildung 3.6. c3 ist
das dem Punkt p in der letzten Iteration nächstgelegene und daher aktuell
zugeordnete Clusterzentrum. Aufgrund der Verschiebung der Clusterzentren ist
die obere Schranke u(p) nicht mehr scharf und daher größer als die tatsächliche
Distanz zwischen p und c3. Sie überschreitet die halbe Distanz zwischen c3 und c1

beziehungsweise c4 und „ragt“ somit in die Voronoi-Zelle dieser Clusterzentren.
Daher können c1 und c4 nicht gepruned werden. Die halbe Distanz zwischen
c3 und c2 überschreitet die obere Schranke. Ein Pruning von c2 ist daher
möglich. Eine genaue Distanzberechnung würde aber zeigen, dass c3 weiterhin
das nächstgelegene Clusterzentrum ist. Eine Neuzuweisung findet nicht statt.

Zu Beginn jeder Iteration müssen die paarweisen Distanzen aller Clusterzen-
tren berechnen werden. Es werden k·(k−1)

2
zusätzliche Distanzberechnungen und

ein ebenso großer zusätzlicher Speicherbedarf von Θ
(

k·(k−1)
2

)
benötigt.
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Abbildung 3.6.: Das Pruning mit Hilfe von Center-Center-Distanzen nutzt die
obere Schranke u(p) (rot) und die halbe Distanz zwischen dem
aktuell zugeordneten und allen anderen Clusterzentren (blau).

3.3.2. Distanz zu einem Fixpunkt („Norm“)

Der im Rahmen von Drakes Masterarbeit [Dra13, Abschnitt 3.2] entwickelte
und später in [HD17, Abschnitt 2.4.5] publizierte Annulus-Algorithmus5 führt
die Distanz zu einem Fixpunkt6 als zusätzliches Pruningkriterium ein.

Pruningkriterium 3 (Distanz zu einem Fixpunkt)
Alle Clusterzentren c, deren Distanz zum Fixpunkt7 von der Distanz des
Datenpunktes p zum Fixpunkt um mehr als die obere Schranke u abweicht,
können ausgeschlossen werden8:

∀c ∈ C :
∣∣ ‖c‖ − ‖p‖ ∣∣ > u(p)

=⇒ c kann ausgeschlossen werden.
(3.8)

Bei der Visualisierung (Abbildung 3.7) dieses Pruningkriteriums entsteht
ein Ring („Annulus“) mit der doppelten oberen Schranke als Durchmesser
um den Fixpunkt, sodass der Datenpunkt auf dem Kreis in der Mitte des

5In späteren Veröffentlichungen auch als Annular-Algorithmus bezeichnet.
6Beispielsweise der Ursprung des Koordinatensystems, also die Norm des Punktes.
7Im Sinne der Lesbarkeit wird hier der Ursprung und somit die Norm gewählt.
8Da der Annulus eine Erweiterung des Hamerly ist, verwendet das Originalpaper das

Maximum aus u und l, um eine Aktualisierung der unteren Schranke zu ermöglichen.
Diese Anpassung wird in Abschnitt 3.6.4 diskutiert.
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Abbildung 3.7.: Die obere Schranke (rot) des Datenpunktes p spannt den blau
markierten Annulus auf.

Ringes liegt. Clusterzentren, die außerhalb des Annulus liegen, in diesem Fall
c1 und c4, können ausgeschlossen werden. Clusterzentrum c2 liegt innerhalb des
Annulus und kann daher nicht ausgeschlossen werden, obwohl die Distanz zum
Datenpunkt p die obere Schranke überschreitet.

Zur Verwendung dieses Pruningkriteriums müssen einmalig die Distanzen aller
Datenpunkte zum Fixpunkt berechnet und gespeichert werden. Zu Beginn jeder
Iteration müssen die k Distanzen der Clusterzentren zum Fixpunkt berechnet
werden. Insgesamt entsteht so ein zusätzlicher Speicherbedarf von Θ(n+ k).

3.4. Sonstige Verbesserungen

Neben den Pruningkriterien, die den Algorithmus durch Vermeidung von Dis-
tanzberechnungen beschleunigen, möchten wir auch einige weitere Vorschläge
zur Beschleunigung schrankenbasierter, exakter k-means-Algorithmen betrach-
ten. Diese haben unterschiedliche Ansatzpunkte. Teilweise haben sie zum Ziel,
die Aktualisierung der Schranken zu verbessern, teilweise ist das Ziel, den
Verwaltungsoverhead zu reduzieren und dadurch Rechenzeit einzusparen.

3.4.1. Norm of Sums

Wie in Abschnitt 3.2.1 bereits festgestellt, führt die aufsummierte Aktualisierung
der Schranken nach jeder Iteration potentiell zu einem großen Approximations-
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fehler. In [NF16, Abschnitt 3.2] wird eine alternative Aktualisierung vorgestellt,
die anstatt der aufsummierten Bewegung aller Iterationen seit der letzten
scharfen Aktualisierung einer Schranke die tatsächliche Abweichung von der
Position zu diesem Zeitpunkt verwendet.

Der praktische Unterschied zwischen der „Sum of Norms“ und dieser „Norm
of Sums“-Aktualisierung ist in Abbildung 3.8 dargestellt. Bei Sum of Norms
wird die obere Schranke zwischen Punkt p und dem Clusterzentrum immer
weiter pessimistisch erhöht. Bei Norm of Sums wird nur die tatsächliche Dis-
tanz zwischen der Position des Zentrums zum Zeitpunkt der letzten scharfen
Aktualisierung ctight und der aktuellen Position ccur zur scharfen Schranke
addiert.

Um die Abweichung von der derzeitigen Position zu bestimmen, ist es not-
wendig, die historischen Positionen der Clusterzentren zu speichern und für jede
Schranke zu hinterlegen, in welcher Iteration diese zuletzt scharf aktualisiert
wurde.

Zu Beginn jeder Iteration wird für jedes Paar aus Clusterzentrum und gespei-
cherter Position die Distanz der Abweichung berechnet. Bei der Verwendung
einer Schranke wird diese um die Abweichung zur Position der Iteration der
letzten scharfen Aktualisierung modifiziert. Der Approximationsfehler ist dann
auf die pessimistische Aktualisierung beschränkt.

Um bei einer größeren Anzahl an benötigten Iterationen zu verhindern,
dass der Speicherbedarf unbegrenzt wächst und um zu verhindern, dass die
Abweichung für historische Positionen, die nur noch von wenigen Schranken
referenziert werden, berechnet werden muss, werden die historischen Werte in
regelmäßigen Abständen geleert. Dabei wird für jede Schranke hinterlegt, dass
diese in der aktuellen Iteration zuletzt scharf aktualisiert wurde. Die gespeicherte
Distanz wird, wie bei „Sum of Norms“, dauerhaft um die aktuelle Abweichung
angepasst. Anschließend können alle historischen Distanzen verworfen werden.
[NF16] schlägt vor, dass dies alle tclear =

N
min(k,d) Iterationen geschieht.

3.4.2. Delta Updates

Für die Berechnung des neuen Clusterzentrums (Abschnitt 2.1.2) ist es notwen-
dig, das arithmetische Mittel der Datenpunkte eines Clusters zu bestimmen.
Die naheliegende Lösung ist es, diese Zuordnung explizit zu speichern, alle
Datenpunkte des zu aktualisierenden Clusters aufzusummieren und durch die
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Abbildung 3.8.: Sum of Norms (rot) im Vergleich zu Norm of Sums (blau). Der
Wert der letzten scharfen Aktualisierung der Schranke ist schwarz
markiert.

Anzahl der Datenpunkte zu teilen. Diese Lösung hat den Nachteil, dass ein, in
der Anzahl der Datenpunkte linearer, erhöhter Speicherbedarf entsteht. Auch
ist es hier nicht möglich, auf ein lineares Feld zur Speicherung zurückzugreifen,
da es im Falle einer Neuzuordnung nicht effizient aktualisiert werden könnte.

Eine Alternative ist es, über alle Datenpunkte zu iterieren und alle Cluster
gleichzeitig aufzusummieren. Es wird zwar nur ein Speicher für k Zwischener-
gebnisse benötigt, aber auch für diese Lösung ist es notwendig, über alle Punkte
zu iterieren, auch wenn nur wenige Neuzuweisungen stattgefunden haben.

Stattdessen schlägt [Ham10, Abschnitt 3.2.2] vor, sich zu nutze zu machen,
dass das arithmetische Mittel algebraisch aggregiert werden kann. Für jeden
Cluster wird die aktuelle Vektorsumme der Datenpunkte und Anzahl der zuge-
ordneten Datenpunkte gespeichert. Bei einer Neuzuordnung eines Datenpunktes
wird die Summe und Anzahl des alten Clusters verringert, die Summe und
Anzahl des neuen Clusters erhöht. Die neue Position des Clusterzentrum kann
so durch eine einfache Division der Vektorsumme durch die Anzahl berechnet
werden.

Bei der Neuzuweisung eines Datenpunktes sind dadurch pro Punkt zwei Vek-
toradditionen notwendig, allerdings können N Vektoradditionen bei der Aktua-
lisierung der Clusterzentren eingespart werden. Der zusätzliche Speicherbedarf
von einem d-dimensionalen Vektor und einer Ganzzahl pro Clusterzentrum ist
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im Vergleich zu einer expliziten Speicherung der einem Cluster zugeordneten
Datenpunkte zu vernachlässigen.

3.4.3. Nebenläufigkeit

Die Berechnungen innerhalb der beiden Phasen (Abschnitt 2.1) des Lloyd-
Algorithmus und daher auch der betrachteten beschleunigten Algorithmen sind
nicht voneinander abhängig. Die Positionen der Datenpunkte sind über die
gesamte Laufzeit des Algorithmus unverändert. Die Positionen der Clusterzen-
tren verändern sich nur innerhalb der zweiten Phase (Abschnitt 2.1.2). Die
vorgestellten Schranken beziehen sich immer auf einen konkreten Datenpunkt,
möglicherweise aber auf mehrere Clusterzentren.

Eine nebenläufige Ermittlung des nächstgelegenen Clusterzentrums unter-
schiedlicher Datenpunkte ist so auch ohne den Einsatz von Sperren sicher
möglich, sofern die verwendeten Datenstrukturen einen sicheren nebenläufi-
gen Zugriff auf unterschiedliche Elemente erlauben. Lediglich bei der Cluster-
Neuzuweisung ist es notwendig, auf Sperren oder atomare Schreiboperationen
zu setzen, damit eine nebenläufige Zuweisung zum gleichen Cluster das korrekte
Ergebnis liefert. Da schon die Verwendung von Schranken auf dem Grundsatz
fußt, dass eine Neuzuweisung nur selten stattfindet, ist zu erwarten, dass auf
die Erlangung dieser Sperren nicht gewartet werden muss.

Aus diesem Grund ist das k-means-Problem „embarrassingly parallel“. Eine
Parallelisierung ist ohne nennenswerten zusätzlichen Rechenaufwand zur Si-
cherstellung der Korrektheit möglich, die Beschleunigung verhält sich dauerhaft
nahezu linear zu der Anzahl der verwendeten Recheneinheiten.

3.5. Eckdaten der Techniken

Damit ergeben sich die in Tabelle 3.1 dargestellten Eckdaten der vorgestell-
ten Techniken zur Beschleunigung in exakten, schrankenbasierten k-means-
Clustering-Algorithmen.

Distanzen in der Spalte zum Speicherbedarf beziehen sich auf zu speichernde
Rückgabewerte der Distanzfunktion. In der Regel werden diese in [IEEE 754]
standardisierte binary64-Gleitkommazahlen9 mit Bitlänge 64 sein. Punkte sind
d-dimensionale Vektoren. Der Speicherbedarf bezieht sich rein auf die Nutzdaten,

9Üblicherweise als „double precision“-Gleitkommazahlen bezeichnet.
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ohne Beachtung des Overheads der eingesetzten Datenstruktur oder etwaiger
temporärer Variablen.

Der Pflegeaufwand bezieht sich auf den fixen, inhärenten zusätzlichen Pflege-
aufwand pro Iteration. Der entstehende Aufwand zur Prüfung eines Pruningkri-
teriums ist nicht berücksichtigt. Ebenfalls keine Berücksichtigung findet die
scharfe Aktualisierung von Schranken falls kein Pruning möglich ist und eine
exakte Distanzberechnung durchgeführt werden muss. In diesem Fall muss nur
der ohnehin berechnete Wert innerhalb der Datenstruktur aktualisiert werden.
Die Anpassung der Distanzen als Pflegeaufwand bezieht sich auf die Aktua-
lisierung der Schranken (Abschnitt 3.2.1). Eine Anpassung ist eine Addition
beziehungsweise Subtraktion von zwei Distanzen: Der aktuellen Schranke und
der Bewegung des Clusterzentrums.

Für Delta Updates (Abschnitt 3.4.2) und Nebenläufigkeit (Abschnitt 3.4.3)
lässt sich kein fixer Speicherbedarf und kein fixer Pflegeaufwand angeben.

Technik Maximaler Speicherbedarf Pflegeaufwand pro
Iteration

Obere Schranke N Distanzen Anpassung von N
Distanzen

Elkan-Schranke N · k Distanzen Anpassung von N · k
Distanzen

Hamerly-Schranke N Distanzen Anpassung von N
Distanzen

Drake-Schranke N · k Distanzen Anpassung von N ·m
Distanzen

Center-Center k·(k−1)
2

Distanzen Berechnung von
k·(k−1)

2
Distanzen

Norm N + k Distanzen Berechnung von k
Distanzen

Sum Of Norms - Berechnung von k
Distanzen

Norm Of Sums k · tclear Punkte, N Ganzzahlen Berechnung von im
Mittel k· tclear

2
Distan-

zen

Tabelle 3.1.: Eckdaten der Techniken zur Beschleunigung in exakten, schrankenba-
sierten k-means-Clustering-Algorithmen.
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3.6. Einsatz in den Algorithmen

Die reine Existenz von Pruningkriterien erlaubt noch keine Beschleunigung des
Lloyd-Algorithmus. Nachfolgend soll daher untersucht werden, wie die zuvor
vorgestellten Pruningkriterien in unterschiedlichen Algorithmen zum Einsatz
kommen, wie die zusätzlich zu speichernden Informationen (etwa die Schran-
ken) im Detail gepflegt und aktualisiert werden und welche weiteren Prozesse
stattfinden müssen, damit der Algorithmus beschleunigt, aber insbesondere
auch exakt bleibt.

3.6.1. Elkan

Im Elkan [Elk03] werden, neben der Elkan-Schranke (Seite 23) und einer oberen
Schranke, Center-Center-Distanzen zum Pruning verwendet. Die Definition
der Pruningkriterien kann im Elkan unmittelbar übernommen und abgeprüft
werden. Als weitergehende Berechnungen sind lediglich die Aktualisierung der
Schranken nach Verschiebung der Clusterzentren (Abschnitt 3.2.1) und die
Berechnung der Center-Center-Distanzen notwendig.

Eine um die Prüfung der Pruningkriterien erweiterte Version der Prozedur
„assignPointsToCluster“ des Lloyd (Algorithmus 2.3) für einen konkreten
Punkt p findet sich in Algorithmus 3.1. Die Variable nearest_dist konnte
entfallen. Sie wurde durch eine Abfrage der oberen Schranke des Punktes
ersetzt.

Zunächst wird die minimale Center-Center-Distanz für das aktuell derzeit
zugeordnete Clusterzentrum mit Hilfe von Pruningkriterium 2 überprüft. Wenn
dieses relativ schwache Pruningkriterium ein Pruning erlaubt, dann können
alle Clusterzentren ausgeschlossen werden. Die Bearbeitung des Datenpunktes
ist abgeschlossen.

Andernfalls werden für jedes Clusterzentrum die untere Schranke (Zeile 11;
Pruningkriterium 1) und die exakte Center-Center-Distanz (Zeile 14; Pru-
ningkriterium 2) überprüft.

Wenn auch damit kein Pruning möglich ist, dann wird die obere (und untere)
Schranke, die durch die Aktualisierung der Position der Clusterzentren nicht
mehr scharf ist, mit einer Distanzberechnung scharf aktualisiert und die Prüfung
wiederholt. Diese Distanzberechnung ist nur einmalig pro Punkt notwendig.
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Algorithmus 3.1 assignPointsToCluster für einen konkreten Datenpunkt p
im Elkan

1: procedure assignPointsToClusterElkan(p)
2: nearest← getAssignedCluster(p)
3: loose← True
4: if cc_g(nearest) · 0.5 > u(p) then . Globales Center-Center
5: return
6: end if
7: for all c ∈ C do
8: if c = nearest then
9: continue with next c

10: end if
11: if l(p, c) > u(p) then . Untere Schranke
12: continue with next c
13: end if
14: if cc(nearest, c) · 0.5 > u(p) then . Center-Center
15: continue with next c
16: end if
17: if loose then
18: u(p)← d(p, nearest) . Obere Schranke scharf
19: l(p, nearest)← u(p) . Untere Schranke scharf
20: loose← False
21: if l(p, c) > u(p) then . Untere Schranke
22: continue with next c
23: end if
24: if cc(nearest, c) · 0.5 > u(p) then . Center-Center
25: continue with next c
26: end if
27: end if
28: l(p, c)← d(p, c) . Untere Schranke scharf
29: if l(p, c) < u(p) then . Prüfung
30: nearest← c
31: u(p)← l(p, c)
32: end if
33: end for
34: assignPointToCluster(p, nearest)
35: end procedure
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Da im Falle einer Neuzuweisung eine Distanzberechnung stattgefunden haben
muss, bleibt die obere Schranke bis zur Verschiebung der Clusterzentren scharf.

Wenn auch dann kein Pruning möglich ist, dann ist für das aktuelle Cluster-
zentrum eine exakte Distanzberechnung notwendig. Die untere Schranke kann
in diesem Zuge scharf aktualisiert werden.

Abschließend erfolgt in Zeile 29 analog zum Lloyd eine Prüfung, ob das
aktuelle Clusterzentrum näher als das aktuell zugeordnete am Datenpunkt liegt.
In diesem Falle ist eine Neuzuweisung notwendig. Die obere Schranke wird
entsprechend angepasst.

Da den Schranken entweder unmittelbar (untere Schranke) oder mittelbar
(zugeordnetes Clusterzentrum für obere Schranke) ein konkretes Clusterzentrum
zugeordnet ist, können diese nach Verschiebung der Clusterzentren mit der
konkreten Bewegung eines Clusterzentrums aktualisiert werden.

Eine Variante des Elkan ohne den Einsatz von Pruningkriterium 2 wird auch
als „Simplified Elkan“ bezeichnet [NF16, Abschnitt 2.2].

3.6.2. Hamerly

Der Hamerly [Ham10] verwendet, genau wie der Elkan, obere und untere
Schranke, sowie Center-Center-Distanzen. Das Pruning beim Hamerly erfolgt
binär: Entweder können alle Clusterzentren gepruned werden oder keines. Die
Hamerly-Schranke erlaubt kein präziseres Pruning, die Center-Center-Distanzen
würden es analog zum Elkan erlauben.

Die Struktur des Prunings im Hamerly ist sehr ähnlich dem Pruning im
Elkan. Der Unterschied besteht darin, dass das Pruning nicht innerhalb der
Schleife über alle Zentren stattfindet, sondern, wie die globalen Center-Center-
Distanzen des Elkans, unmittelbar vor der Schleife. Wie beim Elkan werden die
Pruningkriterien 1 (Zeile 3) und 2 (Zeile 6) gegen die aktuelle obere Schranke
geprüft. Wenn kein Pruning möglich ist, wird ganz analog die obere Schranke
scharf aktualisiert und die Pruningkriterien werden erneut geprüft.

Wenn auch das kein Pruning erlaubt, dann müssen, analog zum Lloyd, die
Distanzen zu allen Clusterzentren ermittelt werden, um das nächstgelegene
Clusterzentrum zu bestimmen. Da alle Distanzen berechnet werden müssen,
wird in diesem Zuge die untere Schranke des Hamerly scharf aktualisiert. Sie
entspricht der Distanz zum zweitnächsten Clusterzentrum.
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Algorithmus 3.2 assignPointsToCluster für einen konkreten Datenpunkt p
im Hamerly

1: procedure assignPointsToClusterHamerly(p)
2: nearest← getAssignedCluster(p)
3: if l(p) > u(p) then . Untere Schranke
4: return
5: end if
6: if cc_g(nearest) · 0.5 > u(p) then . Globales Center-Center
7: return
8: end if
9: u(p)← d(p, nearest) . Obere Schranke scharf

10: if l(p) > u(p) then . Untere Schranke
11: return
12: end if
13: if cc_g(nearest) · 0.5 > u(p) then . Globales Center-Center
14: return
15: end if
16: nearest← ⊥
17: u(p)←∞
18: l(p)←∞
19: for all c ∈ C do
20: dist← d(p, c)
21: if dist < u(p) then
22: l(p)← u(p)
23: nearest← c
24: u(p)← dist
25: else if dist < l(p) then
26: l(p)← dist
27: end if
28: end for
29: assignPointToCluster(p, nearest)
30: end procedure
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Die Anpassung der oberen Schranke erfolgt wie beim Elkan. Da sich die untere
Schranke nicht auf ein konkretes Clusterzentrum, sondern auf alle Clusterzentren
außer dem nächstgelegenen bezieht, muss die untere Schranke um die maximale
Bewegung innerhalb der Menge dieser Clusterzentren angepasst werden.

Analog zum „Simplified Elkan“ gibt es einen „Simplified Hamerly“, der
keine Center-Center-Distanzen nutzt. Die später in dieser Arbeit betrachteten
Algorithem „Annulus“ (Abschnitt 3.6.4) und „Exponion“ (Abschnitt 3.6.5) sind
unmittelbare Erweiterungen des Hamerly um leichtgewichtige Pruningkriterien
zur Vermeidung des binären Prunings.

3.6.3. Drake

Beim Drake [Dra12] kommt ausschließlich Pruningkriterium 1 auf Basis der
Drake-Schranke zum Einsatz.

Als erstes prüft der Drake mit der Schleife in Zeile 3, ab welcher unteren
Schranke ein Pruning mit Hilfe von Pruningkriterium 1 möglich ist. Wenn
die erste Schranke ein Pruning erlaubt (Zeile 9), dann ist das zweitnächste
Clusterzentrum weiter entfernt als das nächste Clusterzentrum. Entsprechend
kann die Prüfung an dieser Stelle abgebrochen werden. Wenn keine Schranke
ein Pruning erlaubt (Zeile 11), dann müssen alle Clusterzentren geprüft werden.
Diese sind Kandidaten das nächstgelegene Clusterzentrum zu sein. In allen
anderen Fällen sind das aktuell zugeordnete sowie alle Clusterzentren, die nicht
gepruned werden können, Kandidaten das nächstgelegene Clusterzentrum zu
sein.

Anschließend werden die Kandidaten nach ihrer Distanz zum Punkt p sortiert
(Zeile 19). Hierbei wird die exakte Distanz zwischen p und dem Kandidaten
benötigt. Diese Berechnung ist im Algorithmus nicht dargestellt, sie könnte
aber im Rahmen der Erstellung der Kandidatenliste erfolgen. In jedem Fall
muss die Distanz auch nach der Sortierung zur Verfügung stehen, da sie in
den Zeilen 21 und 23 noch zur scharfen Aktualisierung der Schranken benötigt
wird.

Die sortierte Kandidatenliste enthält nun die z nächstgelegenen Clusterzen-
tren. Das erste Clusterzentrum wird dem Punkt zugewiesen und zur scharfen
Aktualisierung der oberen Schranke genutzt. Alle anderen werden genutzt, um
die unteren Schranken scharf zu aktualisieren.
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Algorithmus 3.3 assignPointsToCluster für einen konkreten Datenpunkt p
im Drake

1: procedure assignPointsToClusterDrake(p)
2: z ← ⊥
3: for i← 1..b do . Prüfung des Prunings
4: if l(p, i) > u(p) then
5: z ← i
6: break loop
7: end if
8: end for
9: if z = 1 then . Alle Clusterzentren können gepruned werden

10: return
11: else if z = ⊥ then . Kein Clusterzentrum kann gepruned werden
12: candidates← C
13: else . Manche Clusterzentren können gepruned werden
14: candidates[1]← getAssignedCluster(p)
15: for i← 1..(z − 1) do
16: candidates[i+ 1]← lc(p, i)
17: end for
18: end if
19: sort candidates by their distance to p
20: assignPointToCluster(p, candidates[1]) . Aktualisierung der

oberen Schranke
21: u(p)← d(p, candidates[1])
22: for i← 2..length(candidates) do . Aktualisierung der unteren

Schranke
23: l(p, i− 1)← d(p, candidates[i])
24: end for
25: end procedure
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Nach den Annahmen in Abschnitt 3.2 ist zu erwarten, dass nach wenigen
Iterationen nur geringe Änderungen an der Clusterzuordnung notwendig sind
und Datenpunkte aufgrund des Verhältnisses aus intra-Cluster- und inter-
Cluster-Distanzen nicht plötzlich einem bislang weit entfernten Clusterzentrum
zugeordnet werden. Entsprechend führen primär die ersten unteren Schranken
zu einem Pruning. Die Pflege präziser Schranken zu weiter entfernten Clus-
terzentren ist daher nicht mehr notwendig und führt zu einem vermeidbaren
Overhead. Aus diesem Grund wird in jeder Iteration ermittelt, wie viele Schran-
ken zum Pruning maximal notwendig waren und die Anzahl der eingesetzten
Schranken wird nach unten auf diesen Wert angepasst. Die weiter entfernten
Clusterzentren werden damit in der letzten Hamerly-Schranke zusammengefasst.
Auf diese Weise variiert der Drake die Anzahl der Schranken von anfänglichen
k
4

auf potentiell nur k
8

Schranken.

Die ersten b− 1 Schranken beziehen sich auf ein konkretes Clusterzentrum.
Entsprechend werden diese, wie beim Elkan, um die Bewegung dieses Cluster-
zentrums angepasst. Die letzte Schranke bezieht sich auf alle verbleibenden
Clusterzentren. Da diese nicht explizit gespeichert werden sollen und schon
bei der Zuordnung der Datenpunkte zur Verringerung der Anzahl der Schran-
ken angenommen wird, dass die letzte Schranke einen hohen Betrag hat, ist
auch der Einfluss von Big Movern auf die Pruningleistung begrenzt. Entspre-
chend ist es praktikabel, die letzte Schranke um die maximale Bewegung aller
Clusterzentren anzupassen, um Rechenaufwand zur Auswahl des passenden
Clusterzentrums einzusparen.

Wie schon in der Vorstellung der Drake-Schranke genannt (Seite 26), führt
die Aktualisierung der Schranken potentiell zu einer Verletzung der aufsteigen-
den Ordnung. Eine echte Sortierung würde einen großen Aufwand bedeuten,
entsprechend werden die Schranken auf ihren Nachfolger beschränkt. Sie sind
dadurch weniger scharf, aber nach den getroffenen Annahmen hat dies keine
Auswirkung auf die Pruningleistung. Wenn die Aktualisierung der Schranken
in umgekehrter Reihenfolge, beginnend mit Schranke b, stattfindet, dann kann
diese Beschränkung unmittelbar bei der Aktualisierung berücksichtigt werden.
Als zusätzlicher Berechnungsaufwand wird lediglich ein zusätzlicher Vergleich
zur Prüfung, ob die Schranke ihren Nachfolger überschreitet, benötigt. Im
Vergleich zu einer echten Sortierung ist dies zu vernachlässigen.
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3.6.4. Annulus

Der Annulus-Algorithmus [Dra13] ist eine strikte Erweiterung des in Ab-
schnitt 3.6.2 vorgestellten Hamerly und führt die Distanz zu einem Fixpunkt
(Pruningkriterium 3, Abschnitt 3.3.2) als zusätzliches Pruningkriterium ein.

Dies erlaubt ein feingranulareres Pruning im Vergleich zum binären Pruning
nur mit der unteren Schranke.

Um sicher zu stellen, dass die untere Schranke, die sich auf alle Clusterzentren
bezieht, auch beim Pruning einzelner Clusterzentren korrekt scharf aktuali-
siert werden kann, dürfen Clusterzentren, die potentiell die untere Schranke
unterschreiten, nicht gepruned werden. Entsprechend muss Pruningkriterium 3
so angepasst werden, dass nicht der Betrag der oberen Schranke, sondern das
Maximum aus oberer Schranke und der Distanz zum zweitnächsten bekannten
Clusterzentrum für den Durchmesser des Annulus verwendet wird.

Die obere Schranke für Distanz zum zweitnächsten Clusterzentrum muss
also bekannt sein. Diese wird im Gegensatz zur unteren Schranke im Hamerly
nicht explizit gespeichert. Aus diesem Grunde speichert der Annulus zusätzlich
die Identität des zweitnächsten Clusterzentrums. Diese wird dazu genutzt, um
bei nicht möglichem Pruning mit Hilfe von Pruningkriterium 1 eine obere
Schranke für die Distanz zum zweitnächsten Clusterzentrum zu berechnen. Die
Berechnung dieser Distanz wäre, da kein weiteres Pruning mehr möglich wäre,
im Hamerly ohnehin erfolgt.

Die Zuordnung der Datenpunkte verläuft nahezu identisch zum Hamerly. Die
Anwendung der Pruningkriterien des Hamerly verläuft identisch. Nur dann,
wenn der Hamerly nicht prunen kann, kommt ab Zeile 16 das zusätzliche
Pruningkriterium zum Einsatz. Wie oberhalb diskutiert, wird zunächst eine
obere Schranke für das zweitnächste Clusterzentrum bestimmt. Diese wird als
„Startwert“ für die neue, scharfe untere Schranke des Hamerly verwendet (Zei-
le 17) und bei der exakten Berechnung der Distanzen zu nicht ausschließbaren
Clusterzentren analog zum Hamerly weiter verringert.

Nachdem die Größe des Annulus mit Hilfe der Distanz zum nächsten und
zweitnächsten Clusterzentrum festgelegt wurde, findet in Zeile 19 das eigentliche
Pruning mit Hilfe des zusätzlichen Pruningkriteriums 3 statt. Die Notation
mittels Pseudocode übergeht im Sinne der Lesbarkeit einige Aspekte, die in
einer konkreten Implementierung berücksichtigt werden können und sollten.
Diese sollen daher an dieser Stelle genannt werden.
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Algorithmus 3.4 assignPointsToCluster für einen konkreten Datenpunkt p
im Annulus

1: procedure assignPointsToClusterAnnulus(p)
2: nearest← getAssignedCluster(p)
3: if l(p) > u(p) then
4: return
5: end if
6: if cc_g(nearest) · 0.5 > u(p) then
7: return
8: end if
9: u(p)← d(p, nearest)

10: if l(p) > u(p) then
11: return
12: end if
13: if cc_g(nearest) · 0.5 > u(p) then
14: return
15: end if . Bis zu dieser Stelle unverändert
16: nearest2← getNearest2(p)
17: l(p)← d(p, nearest2) . Obere Schranke der Distanz zum

zweitnächsten Clusterzentrum
18: annulus_size← max(u(p), l(p))
19: candidates←

{
c ∈ C |

∣∣ ‖c‖ − ‖p‖ ∣∣ ≤ annulus_size
}

. Zusätzliches
Pruning

20: for all c ∈ candidates do
21: dist← d(p, c)
22: if dist < u(p) then
23: nearest2← nearest
24: l(p)← u(p)
25: nearest← c
26: u(p)← dist
27: else if dist < l(p) then
28: nearest2← c
29: l(p)← dist
30: end if
31: end for
32: assignPointToCluster(p, nearest)
33: assignNearest2(p, nearest2)
34: end procedure
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Der erste Aspekt ist die redundante Berechnung der Normen innerhalb der
Gleichung. Die Position des Datenpunktes bleibt über die gesamte Laufzeit
des Algorithmus unverändert. Entsprechend sollte ‖p‖ einmalig zu Beginn
des Algorithmus berechnet und anschließend nur abgerufen werden. Analog
bleibt die Position der Clusterzentren innerhalb einer Iteration für alle Punkte
unverändert, sodass auch diese nur einmalig pro Iteration berechnet werden
sollten.

Der zweite Aspekt ist die Verwendung einer binären Suche zur effizienten
Ermittlung der nicht prunbaren Clusterzentren. Wenn die Clusterzentren nach
Berechnung der Normen aufsteigend nach ihrer Norm sortiert werden, dann kann
das erste Clusterzentrum, auf das die Bedingung

∣∣ ‖c‖ − ‖p‖ ∣∣ ≤ annulus_size

zutrifft, mit Hilfe einer binären Suche bestimmt werden. Aufgrund der Stetigkeit
der Betragsfunktion und Monotie auf beiden Seiten der Nullstelle erfüllen alle
folgenden Clusterzentren die Bedingung, bis diese das erste mal verletzt wird.
Anschließend erfüllt kein weiteres Clusterzentrum die Bedingung. Entsprechend
können nach der binären Suche des ersten Clusterzentrums alle weiteren Cluster-
zentren linear geprüft und bei Verletzung der Bedingung die Suche abgebrochen
werden.

Im Vergleich zum Hamerly sind bei der Aktualisierung der Schranken keine
Änderungen notwendig. Die zusätzlichen Informationen werden entweder ein-
malig zu Beginn des Algorithmus (Distanz der Datenpunkte zum Fixpunkt)
ermittelt oder müssen in jeder Iteration scharf berechnet werden (Distanz der
Clusterzentren zum Fixpunkt), sodass diese Berechnung bei der Zuordnung der
Datenpunkte stattfinden kann.

Eine Variante des Annulus auf Basis des „Simplified Hamerly“ bezeichnen
wir als „Simplified Annulus“.

3.6.5. Exponion

Genau wie der Annulus-Algorithmus ist auch der Exponion [NF16] eine strikte
Erweiterung des Hamerly (Abschnitt 3.6.2). Der Exponion kann als Weiter-
entwicklung des Annulus mit dem Ziel, das zusätzliche Pruningkriterium, den
namensgebenden Ring, effektiver zu machen, verstanden werden10.

10Tatsächlich ist der Exponion dem Hamerly aber näher als der Annulus.
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Dazu verschiebt der Exponion den Mittelpunkt des Ringes11 von einem
Fixpunkt zu dem jeweils aktuell zugeordneten Clusterzentrum. Diese Änderung
ist dadurch motiviert, dass das Volumen einer Hyperkugel in Dimension d vom
Radius r als d-te Potenz abhängt [DLMF, S. 5.19.iii]. Durch die Verschiebung
des Mittelpunktes soll eine Reduzierung des Radius erzielt werden.

Das resultierende Pruningkriterium ist das bereits bekannte Pruningkri-
terium 2, die Center-Center-Distanzen. Diese kommen im Hamerly bereits
als globales Pruningkriterium zum Einsatz. Um die Center-Center-Distanzen
zusätzlich lokal, das heißt für ein spezifisches Clusterzentrum, einsetzen zu
können, ist eine kleine Modifikation erforderlich. Es muss zusätzlich der mini-
male Abstand aller Clusterzentren zum aktuell zugeordneten Clusterzentrum
ap berücksichtigt werden. Andernfalls würde potentiell das zweitnächste Clus-
terzentrum ausgeschlossen (Abbildung 3.9b). Dieses wird aber, wie bei der
Vorstellung des Annulus diskutiert, zur scharfen Aktualisierung der unteren
Schranke benötigt.

Pruningkriterium 4 (Center-Center-Distanz (Exponion))
Alle Clusterzentren c, deren Distanz zu dem, einem Datenpunkt p nächstge-
legenen, Clusterzentrum ap die Summe aus der doppelten oberen Schranke
u und der minimalen Distanz zwischen ap und einem anderen Clusterzen-
trum überschreitet, können weder das nächstgelegene, noch das zweitnächste
Clusterzentrum sein und somit ausgeschlossen werden:

∀c ∈ C : d(c, ap) > 2 · u(p) + min
c′∈C\{ap}

{d(c′, ap)}

=⇒ c kann ausgeschlossen werden.
(3.9)

In der Praxis wird der Aufruf der Distanzfunktionen einmalig zu Beginn der
Iteration und nicht pro Datenpunkt durchgeführt.

Eine einfache Umformung der Bedingung von Pruningkriterium 4 zeigt die
Abstammung von der Center-Center-Distanz. Auf der rechten Seite kommt der

11Der beim Exponion ein regulärer Kreis, beziehungsweise eine reguläre Hyperkugel ist.
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Abbildung 3.9.: c1 ist das dem Punkt p nächstgelegene Clusterzentrum. c2 ist das
zweitnächste Clusterzentrum und darf daher nicht ausgeschlossen
werden. Die regulären Center-Center-Distanzen entsprechen dem
roten Kreis.

zweite Summand hinzu.

∀c ∈ C :
d(c, ap)

2
> u(p) + min

c′∈C\{ap}

{
d(c′, ap)

2

}
=⇒ c kann ausgeschlossen werden.

(3.10)

Die Bedingung ist scharf. Eine beispielhafte Situation findet sich in Abbil-
dung 3.9b. Die doppelte obere Schranke zum Datenpunkt für sich genommen
entspricht Pruningkriterium 2. Der Ring des Exponions muss dementsprechend
mindestens so groß sein, damit alle Clusterzentren, die potentiell näher als das
aktuell zugeordnete Clusterzentrum c1 am Datenpunkt p liegen, innerhalb des
Ringes liegen. Damit mindestens ein weiteres Clusterzentrum innerhalb des
Ringes liegt, muss die minimale Distanz zu einem anderen Clusterzentrum zu
der doppelten oberen Schranke addiert werden. Diese Distanz wird genau dann
erreicht, wenn das dem Zentrum c1 nächstgelegene Clusterzentrum c3 auf der
Verlängerung der Strecke zwischen p und c1 liegt. Eine Berücksichtigung der
geometrischen Anordnung im Raum erlaubt die Dreiecksungleichung bekann-
termaßen nicht. Das tatsächlich zweitnächste Clusterzentrum c2 liegt genau
gegenüber von p und befindet sich infinitesimal näher an p als c3. Ein formaler
Beweis der Korrektheit findet sich in [NF16, SM-B.4.].
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Die Identität des zweitnächsten Clusterzentrums ist im Gegensatz zum
Annulus für den Exponion nicht von Belang. Im Vergleich zum Hamerly müssen
für Pruningkriterium 4 zusätzlich alle paarweisen Center-Center-Distanzen
bekannt sein, anstatt nur die betragsmäßig kleinste Distanz pro Zentrum.

In Algorithmus 3.5 ist anhand der Kommentare direkt zu sehen, dass der
Exponion im Vergleich zum Hamerly anstatt über alle Clusterzentren C zu
iterieren nur noch über die, durch das zusätzliche Pruningkriterium 4 aus-
schließbaren, Kandidaten candidates iterieren und nur für diese eine exakte
Distanzberechnung durchführen muss. Weitere Anpassungen sind nicht notwen-
dig, alle notwendigen Informationen stehen bereits zur Verfügung.

Wie auch beim Annulus unterschlägt die Notation in Pseudocode in Zeile 20
einige Details zur effizienten Implementierung. [NF16, Abschnitt 3.1] diskutiert
die Möglichkeit und die Schwierigkeiten einer binären Suche zur Ermittlung der
Kandidaten. Diese gestaltet sich im Vergleich zum Annulus schwieriger, da die
Sortierung der Clusterzentren abhängig vom aktuell zugeordneten Clusterzen-
trum ist. Die Clusterzentren müssen daher einmal pro Clusterzentrum sortiert
werden, entsprechend ergeben sich k Sortiervorgänge. Darüber hinaus kann
der CPU-Cache weniger effizient arbeiten, da für jeden Datenpunkt ein nicht
vorhersagbares Clusterzentrum das aktuell zugeordnete ist. Entsprechend wird
für jeden Datenpunkt eine unterschiedliche Zeile in der Matrix der sortierten
Clusterzentren benötigt.

Als Lösung wird in [NF16] vorgeschlagen, dass keine vollständige Sortierung
der Clusterzentren durchgeführt wird, sondern die Clusterzentren so angeordnet
werden, dass alle Clusterzentren der „Gruppe“ mit Indizes aus dem halboffenen
Intervall [2n, 2n+1) weiter entfernt als alle Clusterzentren mit Index kleiner
2n sind. Innerhalb einer Gruppe ist die Ordnung der Clusterzentren nicht
definiert. Jede Gruppe ist dabei doppelt so groß wie die vorherige Gruppe
und enthält ein Clusterzentrum mehr als alle vorherigen Gruppen zusammen.
Zusätzlich werden die Distanz-Grenzen zwischen den Gruppen gespeichert, diese
entsprechen jeweils dem größten Eintrag einer Gruppe. Die erste Gruppe, in
der alle Clusterzentren außerhalb des Annulus liegen, kann bei dieser Ordnung
mit Hilfe einer binären Suche gefunden werden, ohne dass eine vollständige
Sortierung erforderlich ist.

Für die beispielhafte Tabelle 3.2 würde die Suche für einen Annulus der
Größe 5 die binäre Suche mit einer Prüfung der zweiten Gruppe ([2, 4)) beginnen.
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Algorithmus 3.5 assignPointsToCluster für einen konkreten Datenpunkt p
im Exponion

1: procedure assignPointsToClusterExponion(p)
2: nearest← getAssignedCluster(p)
3: if l(p) > u(p) then
4: return
5: end if
6: if cc_g(nearest) · 0.5 > u(p) then
7: return
8: end if
9: u(p)← d(p, nearest)

10: if l(p) > u(p) then
11: return
12: end if
13: if cc_g(nearest) · 0.5 > u(p) then
14: return
15: end if
16: nearest← ⊥
17: u(p)←∞
18: l(p)←∞ . Bis zu dieser Stelle unverändert
19: annulus_size← 2 · u(p) + cc_g(nearest)
20: candidates← {c ∈ C | cc(nearest, c) ≤ annulus_size} .

Zusätzliches Pruning
21: for all c ∈ candidates do
22: dist← d(p, c) . Ab dieser Stelle unverändert
23: if dist < u(p) then
24: l(p)← u(p)
25: nearest← c
26: u(p)← dist
27: else if dist < l(p) then
28: l(p)← dist
29: end if
30: end for
31: assignPointToCluster(p, nearest)
32: end procedure

Index 1 2 3 4 5 6 7 8 9 10 11 12 13
Gruppe [1, 2) [2, 4) [4, 8) [8, 16)
Distanz 1 6 4 7 11 13 10 32 20 27 35 23 40

Tabelle 3.2.: Beispielhafte Sortierung der Clusterzentren für den Exponion. Die
Distanzgrenzen der Gruppen sind fett gedruckt.
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Die maximale Distanz in dieser Gruppe beträgt 6. Die binäre Suche fährt in
der linken Hälfte fort, da diese Distanz größer als der Annulus ist und alle
„rechtsseitigen“ Clusterzentren ausgeschlossen werden können. Entsprechend
wird als nächstes die erste Gruppe überprüft. Die maximale Distanz beträgt 1.
Diese ist kleiner als der Annulus, es wird in der rechten Hälfte fortgefahren. Es
verbleiben keine weiteren Gruppen zur Prüfung, die Grenze liegt in Gruppe
zwei. Die Clusterzentren mit Index zwischen 1 und 3 müssen überprüft werden.

Im schlechtesten Fall12 müssen aufgrund der gewählten Gruppengrößen im
Vergleich zu einem exakten Pruning für maximal doppelt so viele Clusterzentren
exakte Distanzberechnungen durchgeführt werden.

[NF16] geht allerdings nicht darauf ein, wie die Erzeugung der Gruppen in
der Praxis aussehen könnte. Es wird lediglich die Suche bei gegebenen Gruppen
und die oberhalb vorgestellten Anforderungen an die Gruppen betrachtet.

Genau wie beim Annulus sind auch beim Exponion im Vergleich zum Hamerly
bei der Aktualisierung der Schranken keine Änderungen notwendig.

Im Gegensatz zum Annulus gibt es keine „Simplified Exponion“-Variante.
Die Berechnung der Center-Center-Distanzen ist essentiell für die Verwen-
dung des zusätzlichen Pruningkriteriums 4. Der Overhead bei der zusätzlichen
Verwendung als globales Pruningkriterium ist zu vernachlässigen.

3.6.6. Yinyang

Besonderes Merkmal des in [Din+15] vorgestellten Yinyang-Algorithmus ist,
dass dieser die Cluster zu Beginn in Gruppen aufteilt. Jede dieser Gruppen hat
eine gemeinsame untere Schranke, die sich wie eine Hamerly-Schranke (Seite 24)
verhält. Bei einer scharfen Aktualisierung entspricht sie der geringsten Distanz
eines Clusters der Gruppe, der nicht der dem Datenpunkt nächstgelegene
Cluster ist.

Die Aufteilung der Clusterzentren in Gruppen kann grundsätzlich beliebig
erfolgen. Es bietet sich aber an geometrisch benachbarte Cluster der selben
Gruppe zuzuweisen, da diese, unter der Annahme, dass sie sich bereits nah an
ihrer finalen Position befinden (Abschnitt 3.1), eine ähnliche Größenordnung
für die Distanz zu den einzelnen Datenpunkten besitzen (Abbildung 3.10). Bei
der guten Aufteilung sind alle Cluster einer Gruppe benachbart und haben
daher ähnliche Distanzen zu den Datenpunkten. Die untere Schranke erlaubt
12Nur ein Clusterzentrum der letzten Gruppe liegt innerhalb des Annulus.
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(a) Gute Aufteilung in Gruppen.
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(b) Schlechte Aufteilung der Gruppen.

Abbildung 3.10.: Gegenüberstellung einer guten und einer schlechten Aufteilung
der Gruppen.

ein effektives Pruning. Bei der schlechten Aufteilung sind die Cluster einer
Gruppe über den gesamten Raum verteilt. Die unteren Schranken haben fast
identische Werte, ein effektives Pruning ist nicht möglich.

[Din+15, Abschnitt 3, Step 1] schlägt dazu vor, die initialen Clusterzentren
mit Hilfe von k-means für 5 Iterationen zu clustern. Die Anzahl der Cluster
wird als d k

10
e gewählt, jeder Cluster entspricht einer Gruppe.

Zunächst prüft der Yinyang in Zeile 4 die globale untere Schranke, dem
Minimum der unteren Schranken aller Gruppen, gegen die obere Schranke.
Diese Prüfung entspricht der Prüfung der unteren Schranke im Hamerly (Algo-
rithmus 3.2, Zeile 3). Nach der scharfen Aktualisierung der oberen Schranke
wird diese Prüfung wiederholt, bevor der Yinyang die Kandidatengruppen
ermittelt (Zeile 11). Diese Gruppen sind die Gruppen, die nicht über die untere
Schranke ausgeschlossen werden können.

Für jede Kandidatengruppen wird die untere Schranke auf den maximalen
Wert gesetzt, damit sie bei der Prüfung der einzelnen Clusterzentren nach unten
auf die Distanz zwischen Punkt und dem nächstgelegenen13 Clusterzentrum
einer Gruppe korrigiert werden kann.

Es folgt die einzelne Prüfung aller Clusterzentren. Zunächst wird geprüft, ob
die Gruppe des Zentrums eine Kandidatengruppe ist (Zeile 20). Anschließend
wird geprüft, ob das Clusterzentrum innerhalb seiner Gruppe das nächstgelegene
Clusterzentrum sein kann (Zeile 23). Dazu benötigt der Yinyang den Wert
der unteren Schranke vor der Aktualisierung der Schranken um die maximale
Bewegung innerhalb der Gruppe. Von dieser wird die Bewegung des konkret

13Ausgenommen das dem Punkt zuzuweisende Clusterzentrum.
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3.6. Einsatz in den Algorithmen

Algorithmus 3.6 assignPointsToCluster für einen konkreten Datenpunkt p
im Yinyang

1: procedure assignPointsToClusterYinyang(p)
2: nearest← getAssignedCluster(p)
3: global_lower ← min {l(p, g) | g ∈ G}
4: if global_lower > u(p) then . Globale Prüfung der unteren Schranke
5: return
6: end if
7: u(p)← d(p, nearest)
8: if global_lower > u(p) then . Wiederholung mit scharfer oberer

Schranke
9: return

10: end if
11: candidates← {g | g ∈ G, l(p, g) ≤ u(p)} . Ermittlung der

nicht-prunebaren Gruppen
12: for all g ∈ candidates do . Startwert für untere Schranke
13: l(p, g)←∞
14: end for
15: for all c ∈ C do
16: if c = nearest then
17: continue with next c
18: end if
19: g ← getGroup(c)
20: if g /∈ candidates then . Cluster-Pruning, wenn Gruppe gepruned
21: continue with next c
22: end if
23: if old_l(p, g)− δ(c) > l(p, g) then . Pruning innerhalb der

Gruppe
24: continue with next c
25: end if
26: dist← d(p, c)
27: if dist < u(p) then
28: l(p,getGroup(nearest))← u(p)
29: nearest← c
30: u(p)← dist
31: else if dist < l(p, g) then
32: l(p)← dist
33: end if
34: end for
35: assignPointToCluster(p, nearest)
36: end procedure
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betrachteten Clusterzentrums subtrahiert und somit eine untere Schranke für
das Clusterzentrum gebildet. Diese wird mit der kleinsten bekannten Distanz
der Gruppe zum Punkt verglichen und das Zentrum gepruned, wenn es nicht
das nächstgelegene Zentrum der Gruppe ist.

Wenn keine Prüfung ein Pruning erlaubt, dann wird in Zeile 26 die exakte
Distanz für das Clusterzentrum berechnet und geprüft, ob das Clusterzentrum
entweder das dem Punkt nächstgelegene Zentrum oder das nächstgelegene
Zentrum der Gruppe ist.

Die Aktualisierung der Schranken läuft analog zum Hamerly ab. Die obere
Schranke wird um die Bewegung des zugeordneten Clusterzentrums korrigiert.
Die unteren Schranken werden um die maximale Bewegung aller Clusterzentren
einer Gruppe korrigiert.

Für das clusterspezifische Pruning innerhalb des Zuordnungsschritts ist zu-
sätzlich der „unkorrigierte“ Wert der unteren Schranke und die Bewegungen der
einzelnen Clusterzentren von Interesse. Damit kein doppelter Speicherbedarf für
die untere Schranke anfällt, bietet es sich an, die Korrektur der Schranken in die
Neuzuordnung der Datenpunkte zu integrieren. Auf diese Weise müssen jeweils
nur die alten unteren Schranken eines einzelnen Datenpunktes vorgehalten
werden, eine Reduktion des Speicherbedarfs um den Faktor N .
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4
Verwendete Testdatensätze

Zur Vergleichbarkeit mit bestehender Literatur und zur Sicherstellung einer
repräsentativen Auswahl soll die Implementierung gegen die in [NF16] verwen-
deten Datensätzen überprüft werden. Im Gegensatz zu [NF16] wurde aber keine
Vorverarbeitung zur statistischen Standardisierung der Daten vorgenommen.

Es war nicht möglich, alle Datensätze eindeutig zu identifizieren und zu
beziehen. Mitunter war es gar nicht möglich, den Datensatz zu recherchieren,
etwa weil der Name zu unspezifisch war (beispielsweise „mv“ oder „tsn“). In
anderen Fallen konnten durch einen hinreichend eindeutigen Namen Datensätze
gefunden werden, mitunter bestanden hier aber Abweichungen in Dimension
oder Anzahl.

4.1. Beschreibung der Datensätze

Nachfolgend sollen die genutzten Datensätze kurz vorgestellt werden. Die
genauen Bezugsquellen, der in dieser Arbeit konkret genutzten Datensätze,
finden sich in Anhang A.

birch1

Der birch1-Datensatz ist ein synthetisch generierter 2-dimensionaler Datensatz
bestehend aus 100 000 Datenpunkten. Es finden sich 100 natürliche Cluster
auf den Eckpunkten eines regelmäßigen Gitters. Er wurde für den „BIRCH“-
Clustering-Algorithmus [ZRL97] konstruiert.

In [NF16] wurde dieser Datensatz als „birch“ bezeichnet. Neben dem gitter-
förmigen Datensatz wurden in [ZRL97] auch sinusförmig verteilte und zufällig
verteilte natürliche Cluster untersucht. Darüber hinaus ist unklar, ob der Da-
tensatz in [NF16] auf Basis der Eckdaten in [ZRL97] generiert wurde oder
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Kapitel 4. Verwendete Testdatensätze

Abbildung 4.1.: Der birch1-Datensatz.

ob ein bestehender Datensatz genutzt wurde. Eine sichere Identifizierung des
Datensatzes ist daher nicht möglich.

colormoments

Colormoments ist ein 9-dimensionaler Datensatz generiert aus 68 040 Bildern
der „Corel Image Collection“. Die Dimensionen entsprechen dem durchschnitt-
lichen Wert, der Standardabweichung und der statistischen Schiefe der drei
Komponenten des HSV-Farbraums [DG17].

Da dieser Datensatz auf realen Testdaten basiert, entspricht er mit an
Sicherheit grenzender Wahrscheinlichkeit dem Datensatz in [NF16].

conflongdemo

[RA15] beschreibt den Datensatz als „Data contains recordings of five people
performing different activities. Each person wore four sensors (tags) while
performing the same scenario five times.“. Die Bezugsquelle [FS18] stellt eine
auf drei numerische Attribute reduzierte Version zur Verfügung. Laut der
Angaben dort enthält der Datensatz 164 860 Datenpunkte in 11 natürlichen
Clustern.

Da dieser Datensatz auf realen Testdaten basiert, entspricht er mit an
Sicherheit grenzender Wahrscheinlichkeit dem Datensatz in [NF16].
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covtype

Covertype basiert auf Messdaten unterschiedlicher Wälder in den Vereinigten
Staaten von Amerika. Insgesamt besteht der Datensatz aus 581 012 Daten-
punkten mit 54 Dimensionen. Die Einzelwerte enthalten unter anderem die
Erhebung in Metern, die Distanz zur nächsten oberflächlichen Wasserquelle, bi-
näre Werte für verschiedene Eigenschaften des Bodens und die namensgebende
Waldbedeckung („Cover Type“) als Ganzzahl zwischen 1 und 7 [DG17].

Da dieser Datensatz auf realen Testdaten basiert, entspricht er mit an
Sicherheit grenzender Wahrscheinlichkeit dem Datensatz in [NF16].

house16h

House16h ist ein Datensatz, der zum Test von Algorithmen zur Klassifizierung
entwickelt wurde. Er besteht aus 22 784 Datenpunkten mit namensgebenden
16 Dimensionen von 1990 ermittelten Daten des US Census Bureau. Ziel der
Klassifizierung ist es, auf Basis dieser Daten, den Median-Preis eines Hauses
zu bestimmen. Zur Nutzung mit k-means ist der zu klassifizierende Preis als
17. Dimension Bestandteil des Datensatzes.

Da dieser Datensatz auf realen Testdaten basiert, entspricht er mit an
Sicherheit grenzender Wahrscheinlichkeit dem Datensatz in [NF16].

kddcup04

Kddcup04 ist der „Protein Homology“-Trainingsdatensatz des Knowledge
Discovery and Data Mining Competition (KDDCUP) aus 2004. Er enthält
145 751 Datenpunkte mit jeweils 74 Dimensionen. Die Dimensionen beschrei-
ben unterschiedliche Eigenschaften von Proteinsequenzen [Elb]. Im Rahmen
des KDDCUP soll für diese Sequenzen klassifiziert werden, ob diese homolog1

sind. Der Datensatz enthält 303 Abstammungslinien, der die einzelnen Daten-
punkte zugeordnet sind. Nicht alle Datenpunkte entstammen aber tatsächlich
der zugeordneten Abstammungslinie, sondern sind negative Trainingsdaten.
Entsprechend sind im Datensatz mindestens 303 natürliche Cluster zu finden.
[FS18] gibt k = 2000 als Anzahl der natürlichen Cluster an.

Dieser Datensatz basiert auf realen Testdaten und entspricht daher wahr-
scheinlich dem Datensatz in [NF16]. Der genutzte Datensatz in [NF16] wird

1Homologe Proteine haben die gleiche Abstammung.
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allerdings mit 145 750 Datenpunkten angegeben und ist somit um einen Daten-
punkt kleiner.

mnist784

(a) k = 16 (b) k = 16 (c) k = 24

Abbildung 4.2.: Mögliche Clusterzentren im mnist784-Datensatz für unterschiedli-
che k und unterschiedliche Initialisierung.

Der mnist784-Datensatz besteht aus 60 000 Graustufen-Bildern handgeschrie-
bener Ziffern. Die Bilder haben eine Höhe und Breite von jeweils 28 Pixeln,
entsprechend kann jedes Bild als Vektor, bestehend aus 784 ganzzahligen Wer-
ten aufgefasst werden. Für jede Ziffer und Variante einer Ziffer2 findet sich ein
natürlicher Cluster. Abbildung 4.2 zeigt einige beispielhafte Clusterzentren. Ins-
besondere die 4 und die 9 sind schwierig auseinander zu halten. Die 0 hingegen
ist klar zu erkennen, besitzt aber viele mögliche Formen.

Da dieser Datensatz auf realen Testdaten basiert, entspricht er mit an
Sicherheit grenzender Wahrscheinlichkeit dem Datensatz in [NF16].

s1

Der s1-Datensatz ist ein synthetischer 2-dimensionaler Datensatz bestehend
aus 5000 Datenpunkten in 15 natürlichen Clustern [FV06].

Dieser Datensatz wurde in [NF16] nicht verwendet. In dieser Arbeit wurde
er zur effizienten Sicherstellung der Exaktheit der Implementierung genutzt, da
er aufgrund der geringen Größe in jeder Algorithmenvariante schnell geclustert
werden kann.

2Die 1 wird beispielsweise im Englischen typischerweise als senkrechter Strich geschrieben,
während sich im Deutschen der Haken am oberen Ende findet.
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Abbildung 4.3.: Der s1-Datensatz.

uscensus

Der uscensus-Datensatz basiert auf 1 % bei der 21. Volkszählung der Vereinig-
ten Staaten von Amerika erhobenen Daten. Insgesamt enthält der Datensatz
2 458 285 Datenpunkte bestehend aus 68 Dimensionen diskreter Einzelwerte.
Diese Einzelwerte sind, unter anderem, das Alter, der Familienstand, die Staats-
bürgerschaft, das Geschlecht, die Abstammung und das Einkommen [DG17].

Da dieser Datensatz auf realen Testdaten basiert, entspricht er mit an
Sicherheit grenzender Wahrscheinlichkeit dem Datensatz in [NF16].

4.2. Eckdaten der Datensätze

Tabelle 4.1 gibt eine Übersicht über die Eckdaten der genutzten Datensätze. N
ist die Anzahl der Datenpunkte, d die Anzahl der Dimensionen und k ist, sofern
bekannt, die Anzahl der natürlichen Cluster. Der Typ gibt die Arten der Daten-
typen in den einzelnen Dimensionen an. Reelle und ganzzahlige Dimensionen
sind im Sinne reeller und ganzer Zahlen in der Mathematik zu interpretieren.
Distanzen und das arithmetische Mittel sind wohldefiniert. Binäre Dimensionen
enthalten einen von zwei möglichen Werten. Diese sind nicht notwendigerweise
0 und 1. Distanzen sind wohldefiniert, das arithmetische Mittel hingegen nicht.
Werte von kategorischen Komponenten enthalten einen Wert aus einer zuvor
definierten Menge von Zahlen. Die Werte in dieser Menge sind Stellvertreter
für die repräsentierte Eigenschaft, wie etwa den Familienstand des uscensus-
Datensatzes. Entsprechend sind weder Distanzen noch das arithmetische Mittel
wohldefiniert.
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Bezeichner N d k Typ
birch1 100 000 2 100 positiv ganzzahlig

colormoments 68 040 9 reell
conflongdemo 164 860 3 11 reell

covtype 581 012 54 ganzzahlig, binär, kategorisch
house16h 22 784 17 positiv ganzzahlig, positiv reell
kddcup04 145 751 74 ≥ 303 reell
mnist784 60 000 784 ∼ 50 positiv ganzzahlig

s1 5000 2 15 positiv ganzzahlig
uscensus 2 458 285 68 positiv ganzzahlig, binär, kategorisch

Tabelle 4.1.: Eckdaten der genutzten Datensätze.
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5
Praktische Umsetzung

Zur empirischen Untersuchung und Beurteilung der Leistung der Algorith-
men in Kapitel 6 erfolgte eine praktische Implementierung der in Kapitel 3
beschriebenen Konzepte. Dieses Kapitel motiviert in Abschnitt 5.1 die getrof-
fenen Designentscheidungen der praktischen Implementierung. Abschnitt 5.2
erklärt, wie diese Designentscheidungen zur Implementierung der in Kapitel 3
vorgestellten Konzepten konkret berücksichtigt wurden.

5.1. Designentscheidungen

Grundsätzlich ist die Entwicklung nach dem Maßstab „so simpel wie möglich,
so komplex wie notwendig“ erfolgt.

Oberstes Ziel war es, dass die Vergleichbarkeit der Messdaten gewahrt bleibt.
Etwaige Änderungen und Optimierungen müssen daher in gleichem Maße
Anwendung auf alle Algorithmen und Algorithmenkonfigurationen Anwendung
finden.

Unter dieser primären Zielsetzung sollte eine effiziente Implementierung
geschaffen werden, um möglichst viele Messdaten innerhalb kurzer Zeit zu
erlangen. Auf der anderen Seite soll die Lesbarkeit und Verständlichkeit nicht
gefährdet werden. Eine Optimierung, die alle Algorithmen beispielsweise um
5 % beschleunigt und dafür kryptische Anpassungen1 erfordert, wahrt zwar die
Vergleichbarkeit, führt aber zu einer schlechteren Verständlichkeit und erschwert
damit eine Nachvollziehbarkeit der Ergebnisse.

Um eine Vergleichbarkeit der Algorithmen zu gewährleisten, wurde Wert
darauf gelegt, dass ähnliche oder identische Abläufe in allen Algorithmen
identisch implementiert wurden. Die Berechnung der neuen Position eines
Clusterzentrums ist lediglich vom Einsatz der Delta Updates (Abschnitt 3.4.2)

1Beispielsweise der Einsatz von Inline-Assembler.
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abhängig und unterscheidet sich nicht pro Algorithmus. Dementsprechend
befindet sich diese in einer Funktion, die von jedem Algorithmus identisch
verwendet wird.

Die Struktur der Implementierung der Hauptschleife ist unmittelbar an dem
in Kapitel 3 vorgestellten Pseudocode orientiert. Bereits bei der Darstellung
der Algorithmen in Pseudocode wurde Wert auf möglichst geringe Änderungen
im Vergleich zum Lloyd-Algorithmus gelegt.

Die Implementierung der Algorithmen erfolgte in C++14 auf Basis der
Standard Template Library (STL) und ohne Verwendung externer Bibliotheken.
C++ liefert eine gute Leistung in Bezug auf Laufzeit und Speicherverbrauch
und ist daher eine naheliegende Wahl für Algorithmen, die große Datenmengen
verarbeiten sollen.

Wie eingangs genannt soll das resultierende Programm effizient sein, ohne
dass der Programmcode übermäßig komplex wird. So ist beispielsweise die Ver-
wendung der C++ Move Semantics [cpp] oder die Verwendung von Referenzen
eine naheliegende Optimierung zur Vermeidung von Kopieroperationen. Diese
Techniken sollten jedem erfahrenen C++-Programmierer bekannt sein und
wurden daher wann immer möglich eingesetzt.

Die manuelle Verwendung von beispielsweise Streaming SIMD Extensions
(SSE) hingegen würde zwar alle Algorithmen gleichermaßen beeinflussen, die
Verständlichkeit aber gefährden. Entsprechend wurde darauf verzichtet2, das
resultierende Programm ist lediglich etwas langsamer.

Ganz analog liefert die STL alle notwendigen Datenstrukturen, die für die
Algorithmen notwendig sind und diese ist jedem erfahrenen C++-Entwickler
bekannt. Die Verwendung externer Bibliotheken, etwa einer Bibliothek zur
effizienteren Berechnung von Distanzen zwischen zwei Vektoren, erfordert es,
dass der Leser mit ebenjener Bibliothek vertraut ist. Entsprechend wurde auch
hier der Fokus auf die Verständlichkeit und Kompatibilität gesetzt.

Diese Entscheidung ist unter anderem durch die Referenzimplementierung
des Yinyang „yykmeans“ [Din+15] motiviert. yykmeans baut auf dem Graph-
Lab Framework [Low+12] auf. Zur Nachvollziehbarkeit und Reproduktion der
Ergebnisse sind Kenntnisse von GraphLab erforderlich.

Die Wahl des Algorithmus, die Wahl der Initialisierung und die Algorithmen-
konfiguration müssen zum Zeitpunkt der Kompilierung getroffen werden. Das

2Im Idealfall vektorisiert der Compiler die Schleifen selbstständig. Im Falle der Distanz-
funktion wurde dies durch Disassemblierung des resultierenden Programms verifiziert.
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endgültige ausführbare Programm („Binary“) enthält nur den Maschinencode,
der zur Ausführung der gewählten Konfiguration notwendig ist.

Dadurch, dass die Menge der Instruktionen in der Binary kleiner ist, passen
potentiell mehr Instruktionen in den CPU-Cache. Die Chance auf Cache-Misses
wird reduziert. Weiterhin wird die Anzahl der Verzweigungen („Branches“)
reduziert. Anstatt beispielsweise bei jeder Zuweisung prüfen zu müssen, ob
Delta Updates (Abschnitt 3.4.2) zum Einsatz kommen sollen, enthält die Binary
entweder nur den Code für Delta Updates oder nur den Code für die explizite
Speicherung der Zuordnungen.

Die Erfassung von Messdaten, wie der Anzahl durchgeführter Distanzbe-
rechnungen, kann auf diese Weise ebenfalls vollständig entfernt werden, wenn
Speicherverbrauch und Laufzeit extern gemessen werden. Letzteres kann bei-
spielsweise durch die Verwendung des Programms GNU „time“ geschehen.

Die Entscheidung ist darin begründet, dass eine derartige Flexibilität zur
Ausführungszeit zwar für wissenschaftliche Untersuchungen hilfreich sein mag,
diese in einem realen Einsatz aber nicht notwendig ist und die Leistung senkt.

5.2. Konkrete Umsetzung der
Designentscheidungen

Wie in Abschnitt 5.1 motiviert, ist die Umsetzung nahe an dem vorgestellten
Pseudocode orientiert, etwaige Schleifen und Bedingungen finden sich in gleicher
Form im C++-Quellcode wieder.

Identische Funktionsweise aller Algorithmen ist in eine gemeinsame abs-
trakte Basisklasse Algorithm ausgelagert worden von der alle Algorithmen
erben. Diese Basisklasse enthält etwa die Methode zur Neuzuweisung eines
Datenpunktes zu einem Clusterzentrum, Methoden, die den aktuellen Zu-
stand zurückliefern und eine Methode cluster(), die die von den abgeleiteten
Klassen zu implementierende Methode round() so lange aufruft, bis der Algo-
rithmus konvergiert. Sie nimmt ebenfalls die zu clusternden Datenpunkte und
die Positionen der initialen Clusterzentren entgegen. Letztere werden vorab
durch einen Initialization-Algorithmus ausgesucht, zur Verfügung steht k-
means++ (Abschnitt 3.1) und ein naiver Algorithmus, der die ersten k Punkte
des Datensatzes als initiale Clusterzentren wählt.
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Die abgeleiteten Klassen implementieren round(), ergänzen benötigte Klas-
senattribute zur Speicherung der verwendeten Schranken und anderer Metada-
ten und erweitern den Konstruktor um die algorithmenspezifische Initialisierung.

Die Wahl der eingesetzten Datenstrukturen ist, wann immer möglich, auf
std::vector gefallen. Insbesondere dann, wenn die Datenstruktur nur einmalig
aufgebaut wird und anschließend lediglich die Werte der einzelnen Elemente
verändert werden müssen, bietet ein vector einen sehr schnellen Zugriff mit
geringem Speicheroverhead. Dies ist beispielsweise bei der Speicherung der
Schranken der Fall. Es muss einmalig eine Schranke pro Datenpunkt im vector
gespeichert werden, anschließend wird dieses Element nur noch modifiziert.
Wann immer die Anzahl der zu speichernden Elemente bekannt war, wurde der
benötigte Speicher im vector unmittelbar reserviert, damit beim Einfügen von
Elementen keine aufwändigen Vergrößerungen des Speicherbereichs notwendig
sind.

Falls die Verwendung eines vector nicht sinnvoll möglich war, etwa um
die Zugehörigkeit zu einer Menge dynamisch zu speichern, dann wurde ein
std::unordered_set genutzt, um Elemente effizient entfernen zu können.

Zur Speicherung mehrerer zusammengehöriger Werte, wie beispielsweise die
Identität und die Distanz bei der Ermittlung des Clusterzentrums, das sich
am weitesten bewegt hat, wird zur Vermeidung von Fehlern auf eine Struktur
gesetzt. Die Zusammngehörigkeit der Werte ist auf diese Weise unmittelbar
ersichtlich. Indem zur Aktualisierung jeweils die komplette Struktur ersetzt
wird, ist es unwahrscheinlich, dass die Einzelwerte zueinander inkonsistent sind.
Im häufigsten Fall, der Speicherung von zwei Werten, ist ein std::pair die
Struktur der Wahl.

Die Realisierung der Konfiguration bei Kompilierung erfolgt durch die Ver-
wendung von C++-Preprocessor-Direktiven. Nicht gewünschte Funktionalität
wird auf diese Weise vollständig entfernt oder ersetzt.

Nebenläufigkeit kommt im Interesse der Verständlichkeit des Quellcodes nicht
zum Einsatz. Wie in Abschnitt 3.4.3 diskutiert, ist bei Verwendung von mehreren
Threads zu erwarten, dass alle Algorithmen gleichermaßen beschleunigt werden.
Der Einsatz von Nebenläufigkeit erfordert aber ein großes Maß an Sorgfältigkeit
zur Vermeidung von subtilen Fehlern und dem effizienten Einsatz der trotz
guter Parallelisierbarkeit notwendigen Sperren.
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Verifikation

Zur Verifikation der Exaktheit kann konfiguriert werden, dass nach jeder Ite-
ration für jeden Cluster die Anzahl der zugeordneten Datenpunkte und ein
Hashwert dieser Datenpunkte ausgegeben werden soll. Diese Ausgabe kann an-
schließend mit der Ausgabe des Lloyd-Algorithmus als Referenzwert verglichen
werden. Der Lloyd ist, gemäß Definition 3, der Maßstab für die Exaktheit eines
beschleunigten k-means-Algorithmus.

Die Ausgabe verwendet einen Hashwert, um zu vermeiden, dass bei größe-
ren Datensätzen in jeder Iteration mehrere Megabyte Text ausgegeben und
potentiell in eine Datei geschrieben werden müssen. Die Gefahr von Kollisionen
ist zu vernachlässigen, da ein Fehler in der Regel dazu führt, dass zu viele
Clusterzentren ausgeschlossen werden und der Algorithmus daher zu früh kon-
vergiert. Im Falle von subtilen Abweichungen, etwa durch eine andere Sortierung
bei Clusterzentren mit gleicher Distanz, bietet die eingesetze Hashfunktion
eine hinreichende Kollisionssicherheit, insbesondere, da der Algorithmus mit
unterschiedlichen Datensätzen verifiziert wird.

Darüber hinaus werden asserts zur Sicherstellung der Korrektheit und zur
erleichterten Fehlerdiagnose im Falle eines inkorrekten Resultats eingesetzt. So
wird beispielsweise geprüft, dass spätere Pruningkriterien nicht alle Cluster-
zentren ausschließen, wenn dies bereits durch ein früheres Pruningkriterium
hätte erkannt werden müssen. Ein weiteres Beispiel ist die Binärsuche für die
Ermittlung der Clusterzentren im Annulus. Es wird durch ein assert sicherge-
stellt, dass das Clusterzentrum, das vor dem ersten ermittelten Clusterzentrum
in der sortierten Liste steht, nicht im Annulus liegt.

k-means++

Zur Vergleichbarkeit der Ergebnisse der unterschiedlichen Algorithmen wird
der k-means++-Initialisierung ein Zufallsgenerator (Random Number Engine)
übergeben, der mit einem auf der Kommandozeile zu übergebenen Seed initiali-
siert wird. Auf diese Weise kann sicher gestellt werden, dass alle Algorithmen
trotz der probabilistischen Natur von k-means++ die identischen initialen
Clusterzentren nutzen und somit gleich viele Neuzuweisungen und Iterationen
benötigen.
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Lloyd

Für den Lloyd-Algorithmus ist bei der Implementierung nichts zu beachten
gewesen. Die Implementierung besteht im wesentlichen aus zwei Schleifen, die
für jeden Punkt und jedes Clusterzentrum prüfen, welches Zentrum dem Punkt
an nächsten gelegen ist.

Elkan

Der Elkan folgt dem Pseudocode sehr nahe. Wie eingangs erwähnt wird zur
Speicherung der oberen und unteren Schranken jeweils ein std::vector genutzt.
Auch die ermittelten Center-Center-Distanzen werden für die Iteration in einem
std::vector gespeichert. Die zwei Parameterdimensionen werden auf die eine
Dimension des std::vector mit Hilfe einer „row-major“-Speicherung abgelegt.

Die „Simplified Elkan“-Variante ist dadurch realisiert, dass die Verwendung
der Center-Center-Distanzen mit Hilfe des C++-Preprocessors entfernt werden
kann.

Hamerly

Die Hinweise zum Elkan sind nahezu unverändert auf den Hamerly anwendbar.
Ein Unterschied ist, dass die Center-Center-Distanzen nicht mehr paarweise
benötigt werden, sondern lediglich die geringste Distanz pro Zentrum. Entspre-
chend sind die Center-Center-Distanzen bereits eindimensional.

Drake

Im Vergleich zum Pseudocode 3.3 enthält die Implementierung des Drake, wie
in Abschnitt 3.6.3 genannt, zusätzlich noch eine Speicherung der maximalen
Anzahl an benötigten Schranken (z) innerhalb einer Iteration. In der nächsten
Iteration wird dieser Wert genutzt, um die Prüfung der Pruningmöglichkeit
früher abzubrechen.

Die Berechnung der exakten Distanzen erfolgt im Rahmen der Ermittlung
der „Kandidaten“. Die exakte Distanz wird zusammen mit dem Kandidaten in
einem std::pair gespeichert und der std::vector der Kandidaten anschlie-
ßend auf Basis dieser Distanz sortiert. Anschließend enthält der Vektor die

64



5.2. Konkrete Umsetzung der Designentscheidungen

z nächstgelegenen Clusterzentren in der Reihenfolge ihrer Distanz und kann
unmittelbar genutzt werden, um die unteren Schranken zu aktualisieren.

Die Aktualisierung der unteren Schranke erfolgt, wie in Abschnitt 3.6.3
vorgeschlagen, in umgekehrter Reihenfolge, um die aufsteigende Ordnung ohne
zusätzlichen Rechenaufwand sicherzustellen.

Annulus

Der Annulus ermittelt zu Beginn einmalig die Norm aller Datenpunkte. Die
Implementierung von round() erfolgt anschließend identisch zum Hamerly, mit
der Ergänzung des zusätzlichen Pruningkriteriums 3.

Neben der Möglichkeit zur Deaktivierung der binären Suche erlaubt es die im
Rahmen dieser Arbeit erstellte Implementierung die Auswahl des Fixpunktes zu
konfigurieren. [Dra13] legt als Fixpunkt den Ursprung des Koordinatensystems
fest. Alternative Fixpunkte werden im Rahmen von [Dra13] nicht untersucht.
Die Position des Fixpunktes hat über die Distanz zu den Datenpunkten Einfluss
auf die Fläche des Annulus und daher auf die Pruningleistung. Um den Einfluss
der Position zu untersuchen, bietet die Implementierung die Möglichkeit den
Fixpunkt als Schwerpunkt (Mean) aller Datenpunkte zu wählen. Eine weitere
Alternative ist die Wahl des Fixpunktes als das komponentenweise Minimum
aller Datenpunkte. Im zweidimensionalen Fall befindet sich der Fixpunkt somit
in der linken unteren Ecke des minimal umgebenden Rechtecks (Bounding
Box).

Exponion

Analog zum Annulus erweitert der Exponion ebenfalls den Hamerly. Im Un-
terschied zum Hamerly sind hier, wie beim Elkan, die paarweisen Center-
Center-Distanzen und nicht nur die geringste Distanz pro Zentrum notwendig.
Entsprechend verwendet der Exponion eine Implementierung analog zum Elkan.

Die in [NF16] genannte binäre Suche zur Ermittlung der Kandidaten ist
aus den in Abschnitt 3.6.5 genannten Gründen nicht umgesetzt. Das ELKI
Framework [SZ19] enthält eine Implementierung des Exponion in Java. Auch
diese ist bezüglich der binären Suche unvollständig. Die Referenzimplementie-
rung des [NF16] ist diesbezüglich ebenfalls nicht hilfreich, da sie eine geringe
Kommentardichte enthält, genutzte Bezeichner häufig Abkürzungen enthal-
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ten und die Implementierung in komplexen Klassenhierarchien organisiert ist.
Entsprechend ist es schwierig, ein angemessenes Verständnis für die Implemen-
tierung zu entwickeln, um den im Paper genannten Vorschlag zur binären Suche
nachvollziehen und insbesondere auch die Korrektheit prüfen zu können.

Yinyang

Der Yinyang weicht in der Implementierung am stärksten von den anderen
Algorithmen ab. Eine Besonderheit ist hier, dass die Aktualisierung der Schran-
ken, wie in Abschnitt 3.6.6 vorgeschlagen, während jeder Iteration erfolgt und
nicht nach der Iteration. Dies ist darin begründet, dass sowohl der Betrag der
Schranken vor der Aktualisierung, als auch der Betrag der Schranken nach
der Aktualisierung zum Pruning benötigt wird. Indem die Aktualisierung Be-
standteil der jeweiligen Iteration ist, müssen lediglich die Werte eines einzelnen
Datenpunktes doppelt vorgehalten werden.

Das Clustering der initialen Clusterzentren zur Bestimmung der Gruppen-
zusammensetzung erfolgt mit Hilfe des Lloyd-Algorithmus. Die Initialisierung
des Lloyd-Algorithmus erfolgt auf naive Weise. Es werden die ersten d k

10
e Clus-

terzentren als initiale Clusterzentren gewählt. Wenn der Yinyang selbst durch
k-means++ initialisiert wurde, dann ist auch mit dieser naive Initialisierung
eine gute Verteilung zu erwarten, da die zuerst gewählten Clusterzentren bei k-
means++ weit voneinander entfernt sind und somit nicht innerhalb der gleichen
Gruppe sein sollten.

Es erfolgten zwei Implementierungen von Yinyang, die wir als „yinyang“
und „yinyang2“ bezeichnen. Die erste Implementierung („yinyang“) erfolgte
rein auf Basis der Beschreibung in [Din+15]. Diese Implementierung enthält
eine fehlerhafte Aktualisierung der unteren Schranke, die durch eine Unklar-
heit in der textuellen Beschreibung entstanden ist. Anstatt das zweitnächste
Clusterzentrum pro Gruppe separat scharf zu aktualisieren, wird das global
betrachtete zweitnächste Clusterzentrum genutzt, um die untere Schranke der
nicht-prunebaren Gruppen zu aktualisieren. Die separate untere Schranke ist
dadurch lediglich im Falle eines erfolgreichen Prunings von Relevanz, in allen
anderen Fällen degeneriert der „yinyang“ zu einem Hamerly mit deutlich mehr
Overhead. Entsprechend liefert der „yinyang“ eine Leistung vergleichbar mit
dem Lloyd. In vielen Fällen sogar eine schlechtere Leistung.
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Der „yinyang2“ ist eine Implementierung unter Sichtung der Referenzimple-
mentierung. In diesem wird korrekt über das nächstgelegene Clusterzentrum
jeder Gruppe Buch geführt und dieses zur Aktualisierung der unteren Schranke
genutzt. Entsprechend sind die Schranken im Vergleich zum „yinyang“ deutlich
schärfer und es wird eine gute Leistung erzielt.

Der „yinyang“ ist im Sinne der Vollständigkeit enthalten, enthält aber einen
Hinweis auf das Missverständnis von [Din+15].

Aktualisierung der Schranken

Zur Aktualisierung der Schranken müssen die Bewegungen der Clusterzentren
bekannt sein. Dazu wird die aktuelle Position der Clusterzentren zu Beginn
jeder Iteration abgespeichert. Nach der Verschiebung in den Schwerpunkt kann
für jedes Clusterzentrum die Distanz zu seiner alten Position berechnet und
die Schranken entsprechend nach unten oder nach oben korrigiert werden.

Zur Realisierung von „Norm Of Sums“ wird für jede Schranke neben der
Distanz zusätzlich ein Integer gespeichert. Dieser gibt die Iteration der letzten
exakten Aktualisierung an. Bei der Korrektur der Schranken wird die Position
des Clusterzentrums dann nicht mit der zuletzt bekannten Position verglichen,
sondern mit der Position zu der jeweiligen exakten Aktualisierung.

Delta Updates

Delta Updates sind wie in Abschnitt 3.4.2 diskutiert umgesetzt. Statt pro
Clusterzentrum ein std::unordered_set mit den zugeordneten Punkten zu
speichern, wird ein std::pair bestehend aus der Vektorsumme aller zugeord-
neten Datenpunkte und der Anzahl der zugeordneten Datenpunkte gespeichert.
Zur Aktualisierung der Position des Clusterzentrums wird die Vektorsumme
durch die Anzahl geteilt, um das arithmetische Mittel zu erhalten.
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6
Empirische Untersuchung

Dieses abschließende Kapitel untersucht die Leistung der Algorithmen im prakti-
schen Einsatz unter Verwendung der in Kapitel 5 entwickelten Implementierung
und der in Kapitel 4 vorgestellten Datensätze. Um eine Reproduktion und
Überprüfung der Ergebnisse zu ermöglichen, beginnen wir mit einer umfassen-
den Erklärung der Methodik und Testumgebung in Abschnitt 6.1. Nach einer
Vorstellung der verwendeten Beurteilungskriterien in Abschnitt 6.2 folgt in
Abschnitt 6.3 die eigentliche Auswertung der gewonnenen Messdaten.

6.1. Methodik

Durch die Implementierung von sieben Algorithmen1 mit sieben Featureflags, die
sich teilweise gegenseitig ausschließen und nicht immer auf jeden Algorithmus
anwendbar sind, und zwei möglichen Initialisierungen2 ergeben sich insgesamt
156 Varianten von durch Schranken beschleunigten k-means-Algorithmen3.
Listing 6.1 zeigt die genaue Zusammenstellung der Algorithmen mit ihren
jeweiligen Featureflags als Auszug des Python-Skripts zur Generierung des
Makefiles.

Für den praktischen Test sind lediglich die Varianten mit k-means++ als
Initialisierungsmethode zum Einsatz gekommen. Die naive Initialisierung ist
nicht repräsentativ für einen realen Einsatz und findet lediglich im Yinyang zur
Initialisierung der Gruppen Anwendung. Ebenfalls nicht genutzt wurden die
Varianten ohne den Einsatz von Delta Updates. Letztere waren in Vorabtests
konsequent und deutlich schneller als die explizite Speicherung der Zuordnung
von Cluster zu Datenpunkt. Eine detaillierte Untersuchung würde keine über-

1Acht unter Berücksichtigung des fehlerhaften „yinyang“
2Naiv und k-means++
3156 inkludiert die vier nicht-beschleunigten Lloyd-Varianten
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1 class Flags(Enum):
2 NsBound = ("USE_NS_BOUND", "ns")
3 RollingSum = ("USE_ROLLING_SUM", "rolling")
4 SimplifiedElkan = ("SIMPLIFIED_ELKAN", "simplified")
5 SimplifiedHamerly = ("SIMPLIFIED_HAMERLY", "simplified")
6 AnnulusNoBinarySearch = ("ANNULUS_NO_BSEARCH", "noBsearch")
7 AnnulusOriginMean = ("ANNULUS_ORIGIN_MEAN", "originMean")
8 AnnulusOriginEdge = ("ANNULUS_ORIGIN_EDGE", "originEdge")
9

10 class Algorithms(Enum):
11 Annulus = Algorithm(
12 "ANNULUS",
13 [
14 Flags.NsBound ,
15 Flags.RollingSum ,
16 Flags.SimplifiedHamerly ,
17 Flags.AnnulusNoBinarySearch ,
18 [ Flags.AnnulusOriginMean , Flags.AnnulusOriginEdge ],
19 ],
20 )
21 Drake = Algorithm("DRAKE", [Flags.NsBound , Flags.RollingSum])
22 Elkan = Algorithm("ELKAN", [Flags.NsBound , Flags.RollingSum , Flags.

SimplifiedElkan])
23 Exponion = Algorithm("EXPONION", [Flags.NsBound , Flags.RollingSum])
24 Hamerly = Algorithm(
25 "HAMERLY", [Flags.NsBound , Flags.RollingSum , Flags.SimplifiedHamerly]
26 )
27 Lloyd = Algorithm("LLOYD", [Flags.RollingSum])
28 # YinYang = Algorithm("YINYANG", [Flags.RollingSum])
29 YinYang2 = Algorithm("YINYANG2", [Flags.NsBound , Flags.RollingSum])
30
31 class Initialization(Enum):
32 Naive = "NAIVE"
33 KmeansPP = "KMEANSPP"

Listing 6.1: Die möglichen Varianten ergeben sich als kartesisches Produkt aus
Initialisierung, Algorithmus und den Featureflags des jeweiligen
Algorithmus.

raschenden Ergebnisse zu Tage führen und wäre eine Verschwendung in Form
von Rechenleistung und Strom.

Insgesamt verbleiben 39 Varianten von denen mit 24 der Großteil aufgrund
der großen Anzahl an unterstützten Featureflags auf den Annulus entfällt.

Diese wurden unter Deaktivierung der asserts (-DNDEBUG=1) und mit akti-
vierter Erhebung von Statistiken (-DENABLE_STATS=1) mit clang++ 3.8 kom-
piliert. Der vollständige Compiler-Aufruf findet sich in Listing 6.2.

1 clang++ -Isrc -std=c++14 -O2 -Wall -pedantic -DENABLE_STATS=1 -DNDEBUG=1

Listing 6.2: Verwendete Kompilierungsparameter

Zur Erhebung des maximalen Hauptspeicherverbrauchs wurde die Erhebung
der Statistiken deaktiviert, das -DENABLE_STATS=1 entfällt.
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Die Tests erfolgten unter Verwendung eines KVM-virtualisierten Cloud-
servers mit 4 dedizierten CPU-Kernen, 16 GiB Hauptspeicher und NVM Ex-
press (NVMe)-Festspeicher. Die CPU-Kerne werden innerhalb des Cloudservers
als Intel Xeon der Skylake-Architektur mit 2100 MHz Taktfrequenz angegeben
(Listing 6.3), die im physischen Wirt tatsächlich verwendete CPU ist nicht
bekannt.

1 processor : 0
2 vendor_id : GenuineIntel
3 cpu family : 6
4 model : 85
5 model name : Intel Xeon Processor (Skylake , IBRS)
6 stepping : 4
7 microcode : 0x1
8 cpu MHz : 2100.000
9 cache size : 16384 KB

10 physical id : 0
11 siblings : 4
12 core id : 0
13 cpu cores : 2
14 apicid : 0
15 initial apicid : 0
16 fpu : yes
17 fpu_exception : yes
18 cpuid level : 13
19 wp : yes
20 flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov

pat pse36 clflush mmx fxsr sse sse2 ht syscall nx pdpe1gb rdtscp lm
constant_tsc rep_good nopl xtopology pni pclmulqdq ssse3 fma cx16 pcid sse4_1
sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand
hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb kaiser
fsgsbase bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed
adx smap clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 arat md_clear

21 bugs : cpu_meltdown spectre_v1 spectre_v2 spec_store_bypass l1tf mds
22 bogomips : 4200.00
23 clflush size : 64
24 cache_alignment : 64
25 address sizes : 40 bits physical , 48 bits virtual
26 power management:

Listing 6.3: Ausgabe von /proc/cpuinfo für einen CPU-Kern des virtualisierten
Testsystems.

Das eingesetzte Betriebssystem war ein minimales Debian GNU/Linux 9.9
(„Stretch“) mit Linux 4.9. Neben grundlegenden Systemdiensten und dem
OpenSSH-Dienst lief zu jedem Zeitpunkt lediglich eine der 39 Binarys zum
k-means-Clustering. Entsprechend stand die komplette Leistung des Systems
dieser Binary zur Verfügung, eine Verfälschung des Messergebnisses durch
etwaige Kontextwechsel oder von anderen Prozessen angeforderte Rechenzeit
wird dadurch minimiert. Von den 4 dedizierten CPU-Kernen wurde aufgrund
der nicht implementierten Nebenläufigkeit nur einer genutzt. Die Wahl eines
Modells mit weniger CPU-Kernen war nicht möglich, da einige Algorithmen
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zum Clustern der größeren Datensätze mehr als die 8 GiB Hauptspeicher des
nächstkleineren Modells benötigten.

Die während des Clusterings erfassten Messdaten werden durch die Binary
im JSON Lines-Format [War] über die Standardausgabe (std::cout) ausge-
geben. Diese Ausgabe wurde zur Weiterverarbeitung in eine Datei umgeleitet.
Aufgrund der geringen Datenmengen und des schnellen Festspeichers ist keine
Beeinflussing des Messergebnisses zu erwarten gewesen.

Bedingt durch die Leistungsfähigkeit der Hardware, den verfügbaren Haupt-
speicher und die zur Verfügung stehende Zeit wurde die Anzahl von Clustern in
Schritten von 16 zwischen 16 und 96 gewählt. Eine maximale Anzahl von Clus-
tern über 96 hätte mehr Arbeitsspeicher erfordert4. Eine kleinere Schrittgröße
hätte die benötigte Laufzeit ohne zu erwartenden Kenntnisgewinn vervielfacht.

Auf gleiche Weise wurden pro Datensatz und Clusteranzahl nur jeweils fünf
unterschiedliche Initialisierungen mit k-means++ getestet. Diese Anzahl erlaubt
eine Mittelung der resultierenden Werte mit einem angemessenen Zeitaufwand.

Ein vollständiges Clustering aller Datensätze für alle Clusteranzahlen, Initia-
lisierungen und Algorithmenvarianten benötigte mit diesen Beschränkungen
etwa zehn Tage.

6.2. Beurteilungskriterien

Primäres Kriterium zur Beurteilung der Leistung der einzelnen Varianten ist
die Realzeit („Wall Clock Time“) und dadurch implizit auch die CPU-Zeit. Die
Realzeit ist der nach außen sichtbare Effekt der Beschleunigung von k-means.
Eine reduzierte Realzeit bedeutet, dass Ergebnisse schneller zur Verfügung
stehen und dass Hardware eingespart werden kann.

Sekundäres Kriterium ist die Anzahl der Distanzberechnungen. Die Anzahl
der Distanzberechnungen ist der Bestandteil von k-means, der sich algorith-
misch verbessern lässt. Der Lloyd verbringt den Großteil der Rechenzeit mit der
Berechnung von Distanzen. Die benötigte Rechenzeit für eine einzelne Distanz-
berechnung steigt etwa linear mit der Anzahl der Dimensionen (Tabelle 6.1). Der
Overhead der vorgestellten Pruningkriterien hingegen ist konstant in der Anzahl
der Dimensionen, da für einzelne Punkte jeweils nur zwei Gleitkommawerte ver-

4Für die 2-dimensionalen Datensätze waren auch Clusteranzahlen bis 1024 mit der zur
Verfügung stehenden Hardware möglich.

72



6.2. Beurteilungskriterien

glichen werden. Die zusätzlichen Distanzberechnungen, wie etwa zur Ermittlung
der Zentrenbewegungen, haben die gleiche Dimension wie andere Distanzberech-
nungen und können gegen die eingesparten Distanzberechnungen aufgerechnet
werden. Somit dominiert die Berechnung der Distanzen mit steigender Anzahl
an Dimensionen das Laufzeitverhalten. Die Anzahl der Distanzberechnungen
ist dementsprechend ein Indikator, aber nicht das entscheidende Kriterium für
die benötigte Realzeit. Eine Einsparung von Distanzberechnungen ist nicht
unmittelbar für den Benutzer sichtbar.

Der benötigte Hauptspeicher schränkt die Auswahl der möglichen Varianten
abhängig vom Zielsystem möglicherweise ein, wenn der Speicher nicht ausrei-
chend ist, um die genutzten Datenstrukturen vollständig aufzunehmen. Dieser
sollte daher auch Bestandteil der Beurteilung sein. Eine verlässliche externe
Messung stellte sich in der Praxis allerdings als schwierig heraus. Beispiels-
weise hatte der Lloyd in einigen Fällen eine größere maximale Resident Set
Size (RSS) als beschleunigte Algorithmen, obwohl der Lloyd keine zusätzlichen
Daten speichert und alle beschleunigten Algorithmen mindestens obere und
untere Schranken speichern. Aus diesem Grund ist der benötigte Hauptspeicher
hier nicht Teil der Beurteilung.

Zur Ermittlung des Anteils der Distanzberechnungen an der Gesamtlaufzeit
wurde die Dauer einer einzelnen Distanzberechnung auf dem zuvor vorgestellten
Testsystem bestimmt. Um den Einfluss des Messfehlers gering zu halten, wurden
jeweils 50 000 000 Distanzberechnungen durchgeführt und die Gesamtzeit durch
die Anzahl der Distanzberechnungen geteilt. Die Ergebnisse finden sich in
Tabelle 6.1.

In niedrigen Dimensionen dominiert der Overhead des Funktionsaufrufs, die
benötigte Zeit pro Dimension nimmt daher anfangs ab. In höheren Dimensionen
sind mehr Hauptspeicherzugriffe notwendig, die Zeit pro Dimension nimmt da-
her wieder zu. Auffällig ist der Sprung der Laufzeit pro Dimension bei exakt 32
Dimensionen. Ein Test mit dem Programm perf auf einem nicht-virtualisierten
System mit Intel Core i5 der Sandy Bridge-Architektur legt nahe, dass die-
se Anomalie durch schlechte Sprungvorhersage (englisch „Branchprediction“)
verursacht wird (Listing 6.4). Eine Verifizierung auf dem Testsystem ist nicht
möglich, die entsprechenden Daten stehen durch die Virtualisierung nicht zur
Verfügung.
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d Zeit pro Distanz Zeit pro Dimension
2 5,35 ns 2,67 ns
4 6,82 ns 1,70 ns
8 11,12 ns 1,39 ns

16 19,59 ns 1,22 ns
31 36,52 ns 1,18 ns
32 42,36 ns 1,32 ns
33 39,05 ns 1,18 ns
64 75,92 ns 1,19 ns

128 165,21 ns 1,29 ns
256 338,01 ns 1,32 ns
512 681,56 ns 1,33 ns

1024 1366,72 ns 1,33 ns
2 4,71 ns 2,35 ns
3 5,95 ns 1,98 ns
9 11,84 ns 1,32 ns

17 21,08 ns 1,24 ns
54 63,38 ns 1,17 ns
68 83,41 ns 1,23 ns
74 93,60 ns 1,26 ns

784 1039,61 ns 1,33 ns

Tabelle 6.1.: Benötigte Zeit für eine Distanzberechnung abhängig von der Anzahl
der Dimensionen d. Die Anzahl der Dimensionen ist einmal als Zwei-
erpotenzen und einmal als die Größe der tatsächlich verwendeten
Datensätze gewählt.
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1 Performance counter stats for 'target/benchmark 31':
2
3 [...]
4 3,397,612,451 branches # 1482.261 M/sec (83.43%)
5 64,148 branch-misses # 0.00% of all branches (83.33%)
6
7 2.293598268 seconds time elapsed
8
9 Performance counter stats for 'target/benchmark 32':

10
11 [...]
12 3,504,524,873 branches # 1436.719 M/sec (83.45%)
13 49,411,428 branch-misses # 1.41% of all branches (83.33%)
14
15 2.442455416 seconds time elapsed
16
17 Performance counter stats for 'target/benchmark 33':
18
19 [...]
20 3,602,623,395 branches # 1545.174 M/sec (83.36%)
21 40,967 branch-misses # 0.00% of all branches (83.24%)
22
23 2.331939048 seconds time elapsed

Listing 6.4: Schlechte Sprungvorhersage bei 32 Dimensionen.

6.3. Beurteilung

Wir beginnen die Auswertung der Messdaten mit einer Sicht von außen und
vergleichen die Algorithmenvarianten als Ganzes gegeneinander anhand der
zuvor vorgestellten Beurteilungskriterien. Ziel soll es sein, interessante Ansätze
für die nachfolgende Untersuchung der Algorithmen zu finden. Darüber hinaus
soll, falls möglich, abhängig von Datensatz und Anzahl der gewünschten Cluster,
eine Empfehlung für die Wahl einer Algorithmenvariante gegeben werden.
Als Vorbereitung für die Beurteilung der Leistung der Einzelkomponenten
innerhalb einer Algorithmenvariante erfolgt nach dieser Gegenüberstellung
der Algorithmen eine Untersuchung des Clusteringverlaufs für die einzelnen
Datensätze, um beispielsweise das Verhältnis der aktiven und statischen Cluster
(Definition 5) zu bestimmen. Abschließend wird die „Blackbox“ geöffnet, um
zu untersuchen, welche Einzelkomponenten zu welchem Anteil die Leistung der
Algorithmen beeinflussen. Ziel soll es sein, die zu Beginn gewonnenen Ergebnisse
besser erklären zu können und Ansätze zur weiteren Verbesserung der Leistung
zu finden.

6.3.1. Vergleich der Algorithmen

Zum Vergleich der Algorithmen führen wir den Begriff der Dominanz ein.
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Kapitel 6. Empirische Untersuchung

Definition 8 (Dominanz)
Eine Algorithmenvariante A dominiert eine Algorithmenvariante B, wenn A
konsequent eine bessere Leistung als B liefert.

Zunächst betrachten wir die Dominierungen unter Verwendung der Anzahl
der Distanzberechnungen als Kriterium.

Ein Blick auf Tabelle 6.2 zeigt, dass die Situation dort eindeutig ist. Lediglich
drei Varianten des Elkan sind undominiert. Der reguläre Elkan und der Elkan
unter Verwendung von Norm of Sums dominieren nahezu alle anderen Algorith-
men und Algorithmenvarianten. Dies ist wenig überraschend, die große Anzahl
an unteren Schranken des Elkan erlaubt eine feingranulare Aktualisierung der
Schranken nach einer Bewegung der Clusterzentren.

Auffällig ist hingegen, dass der Simplified Elkan mit Norm of Sums undo-
miniert ist. Der Einsatz eines zusätzlichen Pruningkriteriums sollte intuitiv
entweder die Anzahl der Distanzberechnungen reduzieren oder, falls es zu
schwach ist, keine Veränderung bewirken. Entsprechend ist zu erwarten, dass
der reguläre Elkan mit Norm of Sums diesen dominiert. Ein näherer Blick
zeigt, dass diese Auffälligkeit nur beim Clustern des mnist784-Datensatzes
auftritt. Dort hat sie aber einen nicht unerheblichen Einfluss. Beim Clustern
des mnist784 in 96 Cluster benötigte der Simplified Elkan in einigen Fällen
über 4 % weniger Distanzberechnungen als der reguläre Elkan. Die Ursache
ist der konstante Overhead von k2 Distanzberechnungen zur Ermittlung der
Center-Center-Distanzen. Pruningkriterium 2 kann zwar sowohl in Zeile 18
als auch in Zeile 28 von Algorithmus 3.1 Distanzen einsparen. Die Anzahl
der eingesparten Distanzen ist allerdings geringer als der konstante Overhead
von k2. Wie wir bei der detaillierten Analyse des Elkan (Seite 97) feststellen
werden, ist der Unterschied zwischen Elkan und Simplified Elkan in Bezug auf
Distanzberechnungen aber generell kleiner als bei einer naiven Betrachtung der
Leistung von Pruningkriterium 2 anzunehmen wäre.

In hohen Dimensionen sollte die Wahl daher immer auf eine Elkanvariante
fallen. Dies bestätigt sich mit einem Blick auf die Dominierungen mit Realzeit
als Vergleichskriterium beim Clustering des mnist784-Datensatzes (Tabelle 6.3)
und entspricht den Erkenntnissen der aktuellen Literatur [Din+15, Abschnitt 5].

Dieser besitzt mit 784 Dimensionen unter den verwendeten Testdatensätzen
die meisten Dimensionen. Auch hier dominieren die Elkanvarianten alle anderen
Algorithmen. Die Simplified-Variante des Elkan erbringt, wie zuvor diskutiert,
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6.3. Beurteilung

Algorithmus Dominierte Dominiert von
ELKAN_ns 36 0
ELKAN 35 0
ELKAN_ns_simplified 21 0
ELKAN_simplified 21 1
ANNULUS_ns_noBsearch_originEdge 8 2
EXPONION_ns 8 2
ANNULUS_ns_simplified_noBsearch_originEdge 8 4
ANNULUS_ns_originEdge 7 3
ANNULUS_ns_simplified_originEdge 7 5
ANNULUS_ns_noBsearch 6 2
ANNULUS_ns_simplified_noBsearch 6 4
ANNULUS_ns 5 3
ANNULUS_ns_simplified 5 5
ANNULUS_noBsearch_originEdge 4 2
YINYANG2_ns 4 4
ANNULUS_ns_noBsearch_originMean 4 4
ANNULUS_simplified_noBsearch_originEdge 4 6
ANNULUS_ns_simplified_noBsearch_originMean 4 6
ANNULUS_originEdge 3 3
DRAKE_ns 3 4
DRAKE 3 4
ANNULUS_ns_originMean 3 5
YINYANG2 3 5
HAMERLY_ns 3 5
ANNULUS_simplified_originEdge 3 7
ANNULUS_ns_simplified_originMean 3 7
ANNULUS_noBsearch 2 2
EXPONION 2 2
ANNULUS_simplified_noBsearch 2 6
HAMERLY_ns_simplified 2 8
ANNULUS_noBsearch_originMean 2 9
ANNULUS_simplified_noBsearch_originMean 2 19
ANNULUS 1 3
ANNULUS_simplified 1 7
HAMERLY 1 7
ANNULUS_originMean 1 10
HAMERLY_simplified 1 11
ANNULUS_simplified_originMean 1 20
LLOYD 0 38

Tabelle 6.2.: Dominierungen unter Verwendung der Anzahl der Distanzberechnun-
gen als Kriterium.
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Algorithmus Dominierte Dominiert von
ELKAN_ns_simplified 37 0
ELKAN_ns 35 0
ELKAN 35 1
ELKAN_simplified 35 1
YINYANG2_ns 32 4
DRAKE_ns 31 4
DRAKE 31 4
YINYANG2 31 5
HAMERLY_ns_simplified 17 8
HAMERLY_ns 16 8
EXPONION_ns 16 8
ANNULUS_ns_simplified_noBsearch 4 8
ANNULUS_ns_simplified_originMean 4 8
ANNULUS_ns_simplified_originEdge 4 8
ANNULUS_ns_simplified 4 8
ANNULUS_ns_noBsearch_originMean 4 8
ANNULUS_ns_originEdge 4 8
ANNULUS_ns_simplified_noBsearch_originMean 4 8
ANNULUS_ns_simplified_noBsearch_originEdge 4 8
ANNULUS_ns_noBsearch_originEdge 4 8
ANNULUS_ns_noBsearch 4 8
ANNULUS_ns_originMean 4 9
ANNULUS_ns 3 8
HAMERLY_simplified 2 11
HAMERLY 1 11
EXPONION 1 11
ANNULUS_simplified_originEdge 1 11
ANNULUS_simplified_noBsearch_originMean 1 11
ANNULUS_simplified 1 11
ANNULUS_simplified_noBsearch_originEdge 1 11
ANNULUS_originEdge 1 11
ANNULUS_simplified_originMean 1 11
ANNULUS_simplified_noBsearch 1 11
ANNULUS_noBsearch_originMean 1 11
ANNULUS_originMean 1 12
ANNULUS_noBsearch_originEdge 1 22
ANNULUS 1 23
ANNULUS_noBsearch 1 23
LLOYD 0 38

Tabelle 6.3.: Dominierungen unter Verwendung der Realzeit für mnist784.
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6.3. Beurteilung

die bessere Leistung in Bezug auf Distanzberechnungen. In Verbindung mit
dem geringeren Overhead wird so auch eine bessere Leistung in Bezug auf die
Realzeit erreicht.

Bei den niedrigdimensionalen Datensätzen5 in Tabelle 6.4 ist die Situation
weniger eindeutig. Praktisch alle Varianten von Hamerly, Annulus und Exponion
sind undominiert. Dies ändert sich auch nicht, wenn die Annulus-Varianten
mit geändertem Ursprung unberücksichtigt bleiben. Umgekehrt sind aber alle
Algorithmen und Varianten, die nicht auf dem Hamerly basieren, dominiert.
Dies entspricht den Aussagen der jeweiligen Originalveröffentlichungen von
Annulus und Exponion [Dra13; NF16].

Der Hamerly selbst ist nur im Falle des s1 mit 16 Clustern undominiert. Dies
entspricht den Erwartungen. Annulus und Exponion besitzen jeweils nur kleine
Anpassungen, die speziell den schlechten Fall des Hamerly optimieren sollen.
Im Durchschnitt beträgt die Differenz zwischen Hamerly und Exponion für
den s1 mit 16 Clustern 70 µs, ein Unterschied von ungefähr 2 % im Vergleich
zur durchschnittlichen Clusteringzeit des Hamerly (3320,9405 µs). Darüber
hinaus ist der Hamerly nur für zwei von fünf Initialisierungen besser als der
Exponion. Für die anderen drei Initialisierungen ist entweder der Exponion
schneller oder gleichauf. Falls diese geringe Differenz in der Clusteringzeit
nicht ausschließlich auf Messungenauigkeiten zurück zu führen ist, ist diese
dennoch so klein, dass diese keinen relevanten Effekt auf einen Einsatz in der
Praxis hätte. Beispielsweise benötigt das Lesen eines 4 kB-Blocks von einer
Solid-state Drive (SSD) bereits 150 µs und das Lesen von 1 MB Daten aus dem
Hauptspeicher 250 µs [Bon]. Die Dauer des Einlesens des Datensatzes dominiert
die Laufzeitdifferenz also deutlich.

Die durchschnittlichen Realzeiten bis zur Konvergenz (Tabellen 6.5 und 6.6)
geben etwas mehr Aufschluss über die Leistung der undominierten Varianten.
Der Simplified Annulus erzielt insgesamt die beste Leistung. Im Falle des conf-
longdemo ist dieser für die durchschnittliche Zeit in allen getesteten Dimensionen
der beste. Er dominiert die anderen Algorithmen aber nicht, da er in Einzelfällen
bis zu 55 % langsamer als andere Varianten war. Für den birch-Datensatz erzielt
der Simplified Annulus bei großem k eine bis zu 50 % schlechtere Leistung.

52 und 3 Dimensionen
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Algorithmus Dominierte Dominiert von
EXPONION 10 0
ANNULUS_ns_simplified 9 0
ANNULUS_simplified_originEdge 9 0
ANNULUS_ns_simplified_originMean 9 0
ANNULUS_noBsearch_originEdge 9 0
ANNULUS_simplified 8 0
ANNULUS_ns_originEdge 8 0
ANNULUS 8 0
ANNULUS_ns_originMean 8 0
ANNULUS_originMean 8 0
ANNULUS_ns_noBsearch_originEdge 8 0
ANNULUS_noBsearch 8 0
ANNULUS_ns_noBsearch 8 0
EXPONION_ns 8 0
ANNULUS_ns_simplified_originEdge 7 0
ANNULUS_ns 7 0
ANNULUS_originEdge 7 0
ANNULUS_noBsearch_originMean 7 0
ANNULUS_ns_simplified_noBsearch 7 0
ANNULUS_ns_simplified_noBsearch_originEdge 7 0
ANNULUS_simplified_noBsearch 7 0
ANNULUS_simplified_noBsearch_originEdge 7 0
HAMERLY_ns 7 0
HAMERLY 7 0
ANNULUS_ns_noBsearch_originMean 7 1
ANNULUS_ns_simplified_noBsearch_originMean 7 1
ANNULUS_simplified_originMean 6 0
ANNULUS_simplified_noBsearch_originMean 6 1
HAMERLY_ns_simplified 5 0
YINYANG2 5 3
HAMERLY_simplified 4 0
YINYANG2_ns 4 14
ELKAN 3 27
DRAKE 1 30
ELKAN_simplified 1 32
DRAKE_ns 0 30
LLOYD 0 31
ELKAN_ns 0 32
ELKAN_ns_simplified 0 35

Tabelle 6.4.: Dominierungen für niedrigdimensionale Datensätze (s1 / birch / conf-
longdemo).
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B

eurteilung
Algorithmus 16 32 48 64 80 96
ANN 0,38 s (1.19) 0,40 s (1.12) 0,62 s (1.14) 0,64 s (1.14) 0,45 s (1.02) 0,36 s (1)
ANN_noBs 0,38 s (1.2) 0,41 s (1.16) 0,68 s (1.23) 0,71 s (1.26) 0,52 s (1.18) 0,42 s (1.19)
ANN_noBs_oEdge 0,38 s (1.21) 0,41 s (1.16) 0,68 s (1.23) 0,72 s (1.27) 0,52 s (1.17) 0,44 s (1.25)
ANN_noBs_oMean 0,41 s (1.29) 0,45 s (1.27) 0,77 s (1.4) 0,81 s (1.44) 0,61 s (1.38) 0,50 s (1.4)
ANN_ns 0,41 s (1.29) 0,41 s (1.15) 0,64 s (1.16) 0,65 s (1.15) 0,46 s (1.04) 0,36 s (1.03)
ANN_ns_noBs 0,42 s (1.31) 0,43 s (1.22) 0,71 s (1.3) 0,74 s (1.31) 0,53 s (1.21) 0,43 s (1.21)
ANN_ns_noBs_oEdge 0,41 s (1.3) 0,44 s (1.23) 0,71 s (1.29) 0,74 s (1.31) 0,54 s (1.21) 0,43 s (1.23)
ANN_ns_noBs_oMean 0,44 s (1.38) 0,48 s (1.34) 0,78 s (1.42) 0,84 s (1.48) 0,63 s (1.43) 0,51 s (1.44)
ANN_ns_oEdge 0,41 s (1.28) 0,42 s (1.17) 0,65 s (1.18) 0,65 s (1.14) 0,45 s (1.03) 0,36 s (1.03)
ANN_ns_oMean 0,43 s (1.35) 0,45 s (1.26) 0,71 s (1.29) 0,72 s (1.27) 0,51 s (1.15) 0,41 s (1.15)
ANN_ns_simp 0,35 s (1.09) 0,38 s (1.07) 0,58 s (1.06) 0,59 s (1.04) 0,48 s (1.08) 0,44 s (1.24)
ANN_ns_simp_noBs 0,35 s (1.09) 0,41 s (1.14) 0,66 s (1.2) 0,71 s (1.26) 0,60 s (1.36) 0,57 s (1.62)
ANN_ns_simp_noBs_oEdge 0,35 s (1.11) 0,41 s (1.15) 0,66 s (1.2) 0,70 s (1.24) 0,61 s (1.38) 0,59 s (1.66)
ANN_ns_simp_noBs_oMean 0,38 s (1.18) 0,46 s (1.29) 0,76 s (1.39) 0,84 s (1.48) 0,74 s (1.69) 0,75 s (2.12)
ANN_ns_simp_oEdge 0,34 s (1.08) 0,38 s (1.06) 0,57 s (1.05) 0,60 s (1.06) 0,47 s (1.06) 0,44 s (1.25)
ANN_ns_simp_oMean 0,36 s (1.14) 0,43 s (1.2) 0,67 s (1.22) 0,70 s (1.24) 0,57 s (1.28) 0,55 s (1.55)
ANN_oEdge 0,38 s (1.2) 0,39 s (1.1) 0,61 s (1.11) 0,63 s (1.11) 0,44 s (1) 0,35 s (1)
ANN_oMean 0,41 s (1.29) 0,44 s (1.24) 0,69 s (1.26) 0,72 s (1.27) 0,51 s (1.16) 0,40 s (1.14)
ANN_simp 0,32 s (1.01) 0,36 s (1) 0,55 s (1) 0,57 s (1) 0,47 s (1.06) 0,44 s (1.23)
ANN_simp_noBs 0,33 s (1.05) 0,40 s (1.13) 0,65 s (1.17) 0,69 s (1.22) 0,60 s (1.37) 0,60 s (1.69)
ANN_simp_noBs_oEdge 0,33 s (1.04) 0,41 s (1.15) 0,65 s (1.18) 0,70 s (1.24) 0,60 s (1.37) 0,61 s (1.72)
ANN_simp_noBs_oMean 0,36 s (1.12) 0,47 s (1.32) 0,79 s (1.44) 0,90 s (1.59) 0,83 s (1.87) 0,85 s (2.4)
ANN_simp_oEdge 0,32 s (1) 0,36 s (1.02) 0,55 s (1) 0,57 s (1) 0,47 s (1.06) 0,44 s (1.24)
ANN_simp_oMean 0,34 s (1.08) 0,42 s (1.17) 0,65 s (1.18) 0,68 s (1.2) 0,56 s (1.28) 0,54 s (1.54)
DRAKE 0,93 s (2.92) 1,45 s (4.09) 2,49 s (4.53) 3,36 s (5.93) 2,61 s (5.91) 2,53 s (7.15)
DRAKE_ns 1,25 s (3.91) 1,99 s (5.6) 3,58 s (6.52) 3,92 s (6.92) 3,00 s (6.79) 2,64 s (7.46)
ELKAN 0,99 s (3.11) 1,54 s (4.34) 3,20 s (5.83) 3,94 s (6.95) 2,79 s (6.32) 2,11 s (5.96)
ELKAN_ns 1,45 s (4.56) 2,34 s (6.59) 5,12 s (9.32) 6,39 s (11.29) 4,44 s (10.07) 3,44 s (9.73)
ELKAN_ns_simp 1,53 s (4.81) 2,48 s (6.98) 5,54 s (10.07) 7,15 s (12.62) 5,49 s (12.45) 4,90 s (13.86)
ELKAN_simp 1,12 s (3.53) 1,76 s (4.95) 3,76 s (6.85) 4,77 s (8.42) 3,85 s (8.73) 3,39 s (9.57)
EXPONION 0,32 s (1) 0,36 s (1.01) 0,60 s (1.09) 0,64 s (1.14) 0,49 s (1.12) 0,42 s (1.18)
EXPONION_ns 0,34 s (1.08) 0,39 s (1.09) 0,63 s (1.14) 0,67 s (1.18) 0,52 s (1.18) 0,44 s (1.24)
HAMERLY 0,40 s (1.26) 0,48 s (1.36) 0,84 s (1.54) 0,92 s (1.63) 0,71 s (1.61) 0,59 s (1.66)
HAMERLY_ns 0,43 s (1.36) 0,50 s (1.42) 0,85 s (1.55) 0,94 s (1.66) 0,71 s (1.61) 0,58 s (1.64)
HAMERLY_ns_simp 0,37 s (1.18) 0,51 s (1.44) 0,86 s (1.57) 0,98 s (1.73) 0,89 s (2.02) 0,92 s (2.6)
HAMERLY_simp 0,35 s (1.1) 0,50 s (1.42) 0,88 s (1.6) 1,01 s (1.79) 0,95 s (2.15) 0,98 s (2.77)
LLOYD 1,59 s (5.01) 2,67 s (7.5) 5,82 s (10.58) 7,37 s (13) 5,48 s (12.43) 4,84 s (13.69)
YINYANG2 0,44 s (1.38) 0,53 s (1.49) 0,88 s (1.6) 0,97 s (1.71) 0,82 s (1.86) 0,72 s (2.03)
YINYANG2_ns 0,49 s (1.55) 0,64 s (1.79) 1,06 s (1.93) 1,24 s (2.19) 1,02 s (2.31) 0,88 s (2.5)

Tabelle 6.5.: Durchschnittliche Zeiten zum Clustering des birch-Datensatzes. In Klammern ist der Faktor im Vergleich zur besten Zeit angegeben.81
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Algorithmus 16 32 48 64 80 96
ANN 0,68 s (1.17) 1,13 s (1.11) 1,54 s (1.07) 1,88 s (1.1) 2,33 s (1.02) 2,24 s (1.02)
ANN_noBs 0,71 s (1.22) 1,29 s (1.26) 1,92 s (1.33) 2,40 s (1.4) 3,24 s (1.42) 3,21 s (1.46)
ANN_noBs_oEdge 0,72 s (1.24) 1,35 s (1.32) 2,06 s (1.43) 2,60 s (1.52) 3,55 s (1.56) 3,55 s (1.62)
ANN_noBs_oMean 0,75 s (1.28) 1,43 s (1.4) 2,19 s (1.52) 2,78 s (1.62) 3,91 s (1.71) 3,89 s (1.77)
ANN_ns 0,72 s (1.23) 1,15 s (1.13) 1,60 s (1.11) 1,93 s (1.13) 2,42 s (1.06) 2,28 s (1.04)
ANN_ns_noBs 0,75 s (1.28) 1,34 s (1.31) 2,00 s (1.39) 2,47 s (1.44) 3,34 s (1.47) 3,28 s (1.5)
ANN_ns_noBs_oEdge 0,77 s (1.32) 1,41 s (1.38) 2,06 s (1.43) 2,61 s (1.52) 3,54 s (1.55) 3,52 s (1.61)
ANN_ns_noBs_oMean 0,79 s (1.34) 1,47 s (1.44) 2,24 s (1.56) 2,83 s (1.65) 3,92 s (1.72) 3,95 s (1.8)
ANN_ns_oEdge 0,73 s (1.25) 1,19 s (1.17) 1,65 s (1.15) 2,01 s (1.17) 2,54 s (1.12) 2,43 s (1.11)
ANN_ns_oMean 0,75 s (1.28) 1,25 s (1.22) 1,79 s (1.24) 2,16 s (1.26) 2,78 s (1.22) 2,64 s (1.21)
ANN_ns_simp 0,63 s (1.08) 1,06 s (1.04) 1,49 s (1.04) 1,78 s (1.04) 2,34 s (1.03) 2,29 s (1.04)
ANN_ns_simp_noBs 0,66 s (1.12) 1,23 s (1.21) 1,90 s (1.32) 2,38 s (1.39) 3,31 s (1.45) 3,35 s (1.53)
ANN_ns_simp_noBs_oEdge 0,67 s (1.15) 1,31 s (1.29) 2,01 s (1.39) 2,56 s (1.49) 3,65 s (1.6) 3,76 s (1.71)
ANN_ns_simp_noBs_oMean 0,70 s (1.2) 1,40 s (1.37) 2,22 s (1.54) 2,84 s (1.66) 4,14 s (1.82) 4,29 s (1.96)
ANN_ns_simp_oEdge 0,66 s (1.12) 1,09 s (1.07) 1,58 s (1.09) 1,88 s (1.1) 2,48 s (1.09) 2,43 s (1.11)
ANN_ns_simp_oMean 0,67 s (1.15) 1,20 s (1.17) 1,73 s (1.2) 2,08 s (1.21) 2,79 s (1.22) 2,73 s (1.25)
ANN_oEdge 0,69 s (1.17) 1,15 s (1.13) 1,61 s (1.12) 1,94 s (1.13) 2,51 s (1.1) 2,37 s (1.08)
ANN_oMean 0,73 s (1.24) 1,23 s (1.2) 1,78 s (1.24) 2,12 s (1.24) 2,77 s (1.22) 2,63 s (1.2)
ANN_simp 0,59 s (1) 1,02 s (1) 1,44 s (1) 1,71 s (1) 2,28 s (1) 2,19 s (1)
ANN_simp_noBs 0,62 s (1.06) 1,23 s (1.21) 1,91 s (1.33) 2,36 s (1.38) 3,43 s (1.51) 3,44 s (1.57)
ANN_simp_noBs_oEdge 0,65 s (1.11) 1,30 s (1.28) 2,06 s (1.43) 2,55 s (1.49) 3,71 s (1.63) 3,79 s (1.73)
ANN_simp_noBs_oMean 0,66 s (1.14) 1,38 s (1.36) 2,25 s (1.56) 2,84 s (1.66) 4,17 s (1.83) 4,31 s (1.97)
ANN_simp_oEdge 0,60 s (1.03) 1,08 s (1.06) 1,56 s (1.08) 1,84 s (1.08) 2,48 s (1.09) 2,42 s (1.11)
ANN_simp_oMean 0,63 s (1.07) 1,16 s (1.14) 1,71 s (1.19) 2,03 s (1.18) 2,78 s (1.22) 2,73 s (1.24)
DRAKE 1,52 s (2.6) 3,48 s (3.41) 6,22 s (4.32) 9,40 s (5.48) 11,94 s (5.24) 12,52 s (5.71)
DRAKE_ns 1,99 s (3.4) 4,66 s (4.57) 7,53 s (5.23) 10,86 s (6.34) 13,31 s (5.84) 13,52 s (6.17)
ELKAN 1,76 s (3.01) 4,11 s (4.03) 7,23 s (5.02) 11,05 s (6.45) 14,81 s (6.5) 14,78 s (6.74)
ELKAN_ns 2,37 s (4.06) 5,66 s (5.55) 10,37 s (7.2) 16,01 s (9.34) 21,09 s (9.26) 21,23 s (9.69)
ELKAN_ns_simp 2,10 s (3.59) 4,74 s (4.65) 8,79 s (6.1) 13,92 s (8.12) 18,55 s (8.15) 19,08 s (8.7)
ELKAN_simp 1,57 s (2.68) 3,40 s (3.34) 6,05 s (4.2) 9,43 s (5.5) 12,87 s (5.65) 12,97 s (5.92)
EXPONION 0,62 s (1.07) 1,31 s (1.29) 2,07 s (1.44) 2,54 s (1.48) 3,55 s (1.56) 3,46 s (1.58)
EXPONION_ns 0,66 s (1.13) 1,38 s (1.35) 2,08 s (1.45) 2,60 s (1.51) 3,58 s (1.57) 3,52 s (1.6)
HAMERLY 0,72 s (1.22) 1,48 s (1.45) 2,33 s (1.62) 3,03 s (1.77) 4,39 s (1.93) 4,42 s (2.02)
HAMERLY_ns 0,76 s (1.3) 1,53 s (1.5) 2,39 s (1.66) 3,05 s (1.78) 4,42 s (1.94) 4,50 s (2.05)
HAMERLY_ns_simp 0,69 s (1.17) 1,52 s (1.49) 2,48 s (1.72) 3,17 s (1.85) 4,84 s (2.12) 5,09 s (2.32)
HAMERLY_simp 0,65 s (1.1) 1,46 s (1.44) 2,44 s (1.69) 3,14 s (1.83) 4,79 s (2.1) 5,06 s (2.31)
LLOYD 2,43 s (4.16) 5,68 s (5.57) 10,60 s (7.35) 16,64 s (9.71) 22,07 s (9.69) 22,67 s (10.34)
YINYANG2 0,75 s (1.29) 1,44 s (1.41) 2,26 s (1.57) 2,83 s (1.65) 3,83 s (1.68) 3,86 s (1.76)
YINYANG2_ns 0,82 s (1.4) 1,64 s (1.61) 2,52 s (1.75) 3,27 s (1.91) 4,48 s (1.97) 4,49 s (2.05)

Tabelle 6.6.: Durchschnittliche Zeiten zum Clustering des conflongdemo-Datensatzes. In Klammern ist der Faktor im Vergleich zur besten Zeit angegeben.

82



6.3. Beurteilung

In der Blackbox-Beurteilung verbleiben die mittleren Dimensionen6. Für
diese ist die Situation noch weniger eindeutig, als für die niedrigen Dimensionen.
Varianten des Annulus erreichen auch hier regelmäßig sehr gute Leistungen. Eine
pauschalisierte Empfehlung des Annulus wäre hier allerdings nicht angemessen.
Ein Blick auf die Entwicklung der Rangliste für steigende k (Abbildungen 6.1,
6.2 und 6.4 bis 6.6) und die Rangliste für steigende Größen des zu clusternden
Datensatzes (Abbildung 6.8) zeigt interessante Trends.

Zunächst fällt auf, dass der Exponion für k = 16 oftmals auf den niedrigen
Plätzen zu finden ist, mit zunehmendem k aber an Leistung einbüßt. Dies ist
wohl in der fehlenden Implementierung der binären Suche der Kandidaten-
zentren begründet. Abbildung 6.3 zeigt beispielhaft, dass der Exponion für
den house16h-Datensatz in Bezug auf Distanzberechnungen eine gleichbleibend
gute Pruningleistung relativ zu den anderen Algorithmen erreicht. Daraus folgt,
dass der Anteil des Overheads angestiegen ist.

Der zweite interessante Trend ist, dass der Yinyang mit zunehmender Größe
der zu bearbeitenden Daten an Leistung gewinnt. Zu bearbeitende Daten ist
als Produkt aus Clusteranzahl k, Dimension d und Anzahl der Datenpunkte
N zu verstehen. Dieser Effekt ist besonders ausgeprägt für eine steigende
Clusteranzahl zu beobachten. In allen Abbildungen 6.1 bis 6.7 ist zu sehen,
dass der Rang des Yinyang mit zunehmender Anzahl von Clustern steigt.
Insbesondere ist der Yinyang der einzige Algorithmus, der seine Platzierung
in Bezug auf Distanzberechnungen deutlich steigern konnte. Alle anderen
Algorithmen und Varianten behalten relativ zueinander ihre Platzierungen.
Beispielhaft ist dies für den kddcup04-Datensatz in Abbildung 6.7 zu sehen.
Analog tritt dies auch für andere Datensätze auf. Diese Beobachtung deckt
sich mit den Aussagen der Originalveröffentlichung des Yinyang [Din+15,
Abschnitt 5]. Bei einer geringen Anzahl von Clustern arbeitet der Yinyang
mit einer geringen Anzahl von Gruppen und ist entsprechend stark von Big
Movern betroffen. Mit zunehmender Anzahl an Clustern nimmt die Anzahl
der Gruppen proportional zu, sodass bei einer gleichbleibenden Menge von Big
Movern ein geringerer Anteil von Clustern durch diese betroffen ist. Darüber
hinaus sorgt die Gruppierung räumlich benachbarter Cluster dafür, dass sich
Paare von aktiven Clustern7 wahrscheinlich in der gleichen Gruppe befinden,

69 bis 74 bei unseren Datensätzen
7Ein Paar von aktiven Clustern ist so zu verstehen, dass ein Datenpunkt von einem der

beiden Cluster in den anderen wechselt.
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da Punkte ihre Zuordnung in der Regel nur zwischen unmittelbar benachbarten
Clustern bewegen. Umgekehrt folgt daraus, dass die Wahrscheinlichkeit sinkt,
dass sich aktive Cluster in Gruppen aus statischen Clustern befinden. Wenn
eine Gruppe ausschließlich aus statischen Clustern besteht, dann ist keine
Anpassung der Schranke erforderlich. Für Cluster in statischen Gruppen wird
eine gute Pruningleistung erzielt.

Abbildung 6.8 zeigt ein ähnliches, aber weniger ausgeprägtes Verhalten, wenn
man die Anzahl der Datensätze nach dem Produkt von Dimension und Anzahl
der Datenpunkte sortiert.

- This area intentionally left blank -
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Abbildung 6.1.: Rangliste der durchschnittlichen Zeiten zum Clustering des
colormoments-Datensatzes.
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Abbildung 6.2.: Rangliste der durchschnittlichen Zeiten zum Clustering des hou-
se16h-Datensatzes.
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Abbildung 6.3.: Rangliste der durchschnittlichen Distanzberechnungen zum Clus-
tering des house16h-Datensatzes.
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Abbildung 6.4.: Rangliste der durchschnittlichen Zeiten zum Clustering des
covtype-Datensatzes.
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Abbildung 6.5.: Rangliste der durchschnittlichen Zeiten zum Clustering des
uscensus-Datensatzes.
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Abbildung 6.6.: Rangliste der durchschnittlichen Zeiten zum Clustering des kdd-
cup04-Datensatzes.
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Abbildung 6.7.: Rangliste der durchschnittlichen Distanzberechnungen zum Clus-
tering des kddcup04-Datensatzes.
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Abbildung 6.8.: Rangliste der durchschnittlichen Zeiten zum Clustering in 96 Clus-
ter abhängig vom Datensatz. Die Datensätze sind aufsteigend nach
dem Produkt aus der Anzahl der Datenpunkte und der Dimension
geordnet.
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6.3.2. Verhalten der Datensätze

Die Leistung der Pruningkriterien hängt entscheidend von der Genauigkeit der
eingesetzten Schranken ab. Je genauer und somit kleiner die obere Schranke
ist, desto wahrscheinlicher ist es, dass diese eine untere Schranke unterschreitet.
Auch die Fläche des Annulus von Pruningkriterium 3 ist unmittelbar mit
der Größe der oberen Schranke verbunden. Die Bewegung der Clusterzentren
ist der Aspekt des Clusterings, der es erfordert, die Schranken anzupassen.
Dieser Abschnitt untersucht daher die Bewegungen der Clusterzentren in den
eingesetzten Datensätzen.

Zunächst möchten wir einen Fokus auf das Verhältnis aus statischen und
aktiven Clustern setzen. Die Clusterzentren eines statischen Clusters (Definiti-
on 5) bewegen sich nicht. Für diese ist keine weitere Anpassung der Schranken
notwendig. Abbildungen 6.9 bis 6.12 zeigen für ausgewählte Datensätze den
Anteil der aktiven Cluster, also der Cluster, die an der Anpassung der Schranken
beteiligt sind, abhängig von der Iteration. Die einzelnen farbigen Verlaufslinien
entsprechen jeweils einer unterschiedlichen Initialisierung mit k-means++.

Es zeigt sich, dass nicht angenommen werden kann, dass statische Cluster der
aktuellen Iteration auch in zukünftigen Iterationen statische Cluster sind. In
mehreren Beispielen ist zu erkennen, dass nach lokalen Minima aktiver Cluster
wieder deutlich höhere Maxima folgen. Besonders ausgeprägt ist dies für die
schwarze Initialisierung in Abbildung 6.11b. Nachdem in Iteration 78 bereits
über 96 % der Cluster statische Cluster waren, waren noch rund 200 weitere Ite-
rationen erforderlich, bis der Zustand konvergiert ist. Die Anzahl der statischen
Cluster reduzierte sich stellenweise wieder auf lediglich 40 %.

Je größer die Anzahl der Cluster, desto früher sinkt die Anzahl der aktiven
Cluster. Abbildung 6.13 zeigt, dass die Anzahl der aktiven Cluster bei geringer
Anzahl erst nach etwa 50 % der Iterationen beginnt abzunehmen. Bei größerer
Anzahl von Clustern ist die Krümmung deutlich geringer ausgeprägt. Die
Anzahl der aktiven Cluster sinkt etwa linear. Die Verlaufsgraphen in [KFN00]
konnten mit den in dieser Arbeit verwendeten Datensätzen, Initialisierungen und
Clusteranzahlen nicht bestätigt werden. In [KFN00] verhält sich die Anzahl der
aktiven Cluster ungefähr umgekehrt proportional zu der Anzahl der Iterationen.
Insbesondere nahm die Anzahl der aktiven Cluster zu Beginn stark ab, was
gegensätzlich zu den Ergebnissen dieses Abschnitts ist. Am ehesten entspricht
Abbildung 6.9b dem in [KFN00] beobachteten Verlauf.
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Neben dem Verhältnis von aktiven und statischen Cluster zeigen die Verlaufs-
graphen auch den Einfluss der Initialisierung auf die Anzahl der benötigten
Iterationen. Dieser Einfluss ist deutlich zu erkennen. Abbildung 6.10b zeigt,
dass die schlechteste Initialisierung des conflongdemo für 96 Cluster (gelb) fast
drei Mal so viele Iterationen zur Konvergenz benötigt wie die beste (schwarz).

- This area intentionally left blank -
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Abbildung 6.9.: Anteil der aktiven Cluster pro Iteration im birch-Datensatz.
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Abbildung 6.10.: Anteil der aktiven Cluster pro Iteration im conflongdemo-
Datensatz.
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Abbildung 6.11.: Anteil der aktiven Cluster pro Iteration im mnist784-Datensatz.
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Abbildung 6.12.: Anteil der aktiven Cluster pro Iteration im uscensus-Datensatz.
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Abbildung 6.13.: Anteil der aktiven Cluster nach Clusteringfortschritt im
conflongdemo-Datensatz. Die X-Achse repräsentiert die normali-
sierte Iteration. Bei 1 ist das Clustering abgeschlossen.
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Statische Cluster können als Spezialfall des Betrags der Zentrenbewegung
aufgefasst werden. Letztere ist das eigentlich Entscheidende für die Genauigkeit
der Schranken. Abbildungen 6.14 und 6.15 zeigen, dass die maximale Bewegung
der Clusterzentren relativ zu der durchschnittlichen Distanz der Clusterzentren,
insbesondere in späteren Iterationen, zu vernachlässigen ist. Der in diesen
Abbildungen dargestellte Faktor entspricht in einer idealisierten Situation8

der Anzahl der Iterationen, nach denen für einen Datenpunkt, der sich direkt
neben einem Clusterzentrum befindet und somit eine sehr kleine obere Schranke
besitzt, eine neue Distanzberechnung spätestens erforderlich wäre. Für einen
Datenpunkt, der auf der Hälfte der Distanz zu einem anderen Clusterzentrum
und somit direkt an der Grenze der Voronoizelle liegt, ist in nahezu jeder
Iteration eine Distanzberechnung erforderlich, unabhängig davon, wie stark
sich die Clusterzentren bewegen. Zwischen diesen beiden Grenzfällen verhält
sich die Anzahl der Iterationen, die mit einer ursprünglich scharfen unteren
Schranke ohne zusätzliche Distanzberechnungen überbrückt werden können
linear.

Die zuvor betrachtete maximale Bewegung der Clusterzentren ist der re-
levante Aspekt für den Einfluss der Clusterbewegungen beim Einsatz der
Hamerly-Schranke (Seite 24). Diese ist, wie dort diskutiert, stark anfällig für
Big Mover. Abschließend soll für die Datensätze daher noch ermittelt werden,
ob beim Clustering Big Mover auftreten oder ob die meisten Cluster ähnliche
Distanzen zurücklegen. Im Falle der Existenz von Big Movern soll zusätzlich
untersucht werden, wie stark die Bewegung der Big Mover von der durch-
schnittlichen Zentrenbewegung abweicht. Abbildungen 6.16 bis 6.18 setzen die
maximalen Zentrenbewegung mit der durchschnittlichen Zentrenbewegung in
Verhältnis. Während sich das Verhältnis bei k = 16 im einstelligen Bereich be-
findet, bewegen sich Big Mover, unabhängig von der Größe und Dimension des
Datensatzes, bei größeren Clusterzahlen deutlich stärker als das durchschnittli-
che Clusterzentrum. Wenn man nur die Bewegung der aktiven Clusterzentren
in Verhältnis zu der maximalen Zentrenbewegung setzt, also eine Bewegung
von 0 unberücksichtigt lässt, dann weicht die Bewegung der Big Mover weniger
stark von denen eines durchschnittlichen Clusterzentrums ab (Abbildungen 6.19
bis 6.21), bleibt in einigen Fällen aber weiterhin im mittleren zweistelligen

8Alle Zentren besitzen zueinander genau die durchschnittliche Center-Center-Distanz. Das
derzeit zugeordnete Clusterzentrum bewegt sich nicht, wodurch die obere Schranke
unverändert bleibt.
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Bereich (Abbildung 6.21b). Diese Beobachtungen ist konsistent zu den zuvor
betrachteten Ranglisten der Algorithmenvarianten. Für Datensätze bei denen
der Hamerly für kleine k niedrigere Ränge erreicht hat, sinkt der Rang mit
zunehmendem k ab (Abbildungen 6.1 und 6.2 auf Seite 85).

- This area intentionally left blank -
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Abbildung 6.14.: Durchschnittlicher Zentrenabstand geteilt durch maximale Zen-
trenbewegung abhängig von der Iteration im birch-Datensatz.
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Abbildung 6.15.: Durchschnittlicher Zentrenabstand geteilt durch maximale Zen-
trenbewegung abhängig von der Iteration im mnist784-Datensatz.
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Abbildung 6.16.: Maximale Zentrenbewegungen geteilt durch die durchschnittliche
Zentrenbewegung abhängig von der Iteration im birch-Datensatz.
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Abbildung 6.17.: Maximale Zentrenbewegungen geteilt durch die durchschnittli-
che Zentrenbewegung abhängig von der Iteration im mnist784-
Datensatz.
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Abbildung 6.18.: Maximale Zentrenbewegungen geteilt durch die durchschnittli-
che Zentrenbewegung abhängig von der Iteration im uscensus-
Datensatz.
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Abbildung 6.19.: Maximale Zentrenbewegungen geteilt durch die durchschnittliche
Zentrenbewegung aktiver Cluster abhängig von der Iteration im
birch-Datensatz.
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Abbildung 6.20.: Maximale Zentrenbewegungen geteilt durch die durchschnittliche
Zentrenbewegung aktiver Cluster abhängig von der Iteration im
mnist784-Datensatz.
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Abbildung 6.21.: Maximale Zentrenbewegungen geteilt durch die durchschnittliche
Zentrenbewegung aktiver Cluster abhängig von der Iteration im
uscensus-Datensatz.
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6.3.3. Analyse der Algorithmen

Nachdem im Vergleich der Algorithmen untersucht wurde, wie gut die Leistung
der einzelnen Algorithmen im Vergleich zu anderen Algorithmen ist, möchten
wir in diesem Abschnitt untersuchen, warum die Algorithmen diese Ergebnisse
erreichen und welche Parameter die Leistung der Algorithmen beeinflussen.
Ein besonderer Fokus soll dabei auf die Alleinstellungsmerkmale der einzelnen
Algorithmen gesetzt werden.

Elkan

Die Funktionsweise, Vor- und Nachteile des Elkan sind Grundlage bei der
Entwicklung der anderen Algorithmen gewesen, wodurch dieser kein Allein-
stellungsmerkmal besitzt. Aus diesem Grund soll die Leistung der einzelnen
Pruningkriterien und insbesondere die Unterschiede der Pruningleistung zwi-
schen dem regulären Elkan mit Pruningkriterium 2 und dem Simplified Elkan
ohne Einsatz von Pruningkriterium 2 untersucht werden.

Bereits in dem zuvor erfolgten Vergleich der Algorithmenvarianten hat sich
herausgestellt, dass der reguläre Elkan im Vergleich zum Simplified Elkan
durch das zusätzliche Pruningkriterium nicht in jedem Fall Distanzberechnun-
gen einsparen kann (Seite 76). Dies ist nicht ausschließlich darin begründet,
dass Pruningkriterium 2 für bestimmte Konstellationen aus Datensatz und
Clusteranzahl eine schlechte Leistung erbringt. Stattdessen ist es so, dass der
Simplified Elkan in der Lage ist, den Wegfall von Pruningkriterium 2 durch
eine bessere Leistung der unteren Schranke zum größten Teil zu kompensieren.

Abbildungen 6.22 bis 6.27 zeigen, dass der Verlaufsgraph für jeweils einen
beispielhaften Clusteringlauf mit unterschiedlichen Clusteranzahlen auf dem
mnist784- und dem uscensus-Datensatz für Elkan und Simplified Elkan nahezu
identisch ist. Auf der vertikalen Achse ist die Anzahl der eingesparten Distanz-
berechnungen gestapelt aufgetragen. Die Pruningkriterien werden nacheinander
abgeprüft, ein erfolgreiches Pruning mit Hilfe eines früheren Pruningkriteriums
führt dazu, dass ein späteres Pruningkriterium nicht mehr abgeprüft werden
muss. Unsere Implementierung des Elkan prüft die Kriterien innerhalb der im
Diagramm aufgetragenen Reihenfolge. Insbesondere wird die untere Schranke
vor Pruningkriterium 2, aber nach der globalen Variante von Pruningkrite-
rium 2 überprüft. Auf diese Weise ergibt sich die Summe der eingesparten
Distanzberechnungen aus der Anzahl der eingesparten Distanzberechnungen der
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einzelnen Pruningkriterien. Die horizontale Linie am oberen Ende des Graphen
gibt die Anzahl der Distanzberechnungen des Lloyd und damit die maximal
einzusparende Anzahl an Distanzberechnungen an.

Für den uscensus mit 96 Clustern ist in Abbildung 6.27 deutlich zu erkennen,
dass Pruningkriterium 2 für den regulären Elkan deutlich mehr als die Hälfte
der Pruningleistung erbringt. Wenn man aber die Differenz der kombinierten
Pruningleistung aller Pruningkriterien zwischen Simplified Elkan und regulärem
Elkan betrachtet, dann liegt diese im Bereich von 0,1 %. Im Vergleich zum
regulären Elkan vervierfacht sich die Pruningleistung der unteren Schranke für
den Simplified Elkan.

Der größte und relevante Unterschied zwischen dem regulären Elkan und
dem Simplified Elkan befindet sich in der ersten Iteration. Innerhalb der
ersten Iteration sind noch keine unteren Schranken bekannt, ein Pruning
ist daher nur auf Basis der Center-Center-Distanzen möglich9. Hier hat der
Simplified Elkan einen deutlichen Nachteil, der zum Teil in den folgenden
Iterationen wieder ausgeglichen wird. Ein erfolgreiches Pruning führt dazu,
dass für diese Kombination aus Datenpunkt und Clusterzentrum keine untere
Schranke berechnet wird. Insbesondere führt ein erfolgreiches Pruning mit
Hilfe von Pruningkriterium 2 in der ersten Iteration dazu, dass die untere
Schranke für diese Kombination aus Datenpunkt und Clusterzentrum auf dem
initialen Wert von 0 verbleibt. Wenn in der zweiten Iteration nicht erneut ein
Pruning mit Pruningkriterium 2 möglich ist, dann kann aus diesem Grund auch
nicht mit Hilfe der unteren Schranke gepruned werden. Der Simplified Elkan
musste innerhalb der ersten Iteration notwendigerweise alle unteren Schranken
berechnen. Aufgrund der feingranularen unteren Schranke ist ein Pruning in
der zweiten und folgenden Iterationen in der Regel möglich.

Eine notwendige Bedingung für die Ersparnis von Distanzberechnungen ist,
dass der reguläre Elkan identische Paare aus Clusterzentrum und Datenpunkt
über alle Iterationen hinweg mit Hilfe von Pruningkriterium 2 prunen kann.
Andernfalls verschiebt sich im Vergleich zum Simplified Elkan lediglich der
Zeitpunkt der erstmaligen Berechnung der unteren Schranke. Abbildung 6.28
zeigt als Gegenstück zu Abbildung 6.27, dass der Großteil der unteren Schran-
ken für diese konkrete Initialisierung für den uscensus mit 96 Clustern nie
benötigt wird. Von ungefähr 240 Millionen unteren Schranken werden 60 Mil-

9Und für die Datenpunkte, die als initiales Clusterzentrum gewählt wurden, da die obere
Schranke für diese 0 beträgt.
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Abbildung 6.22.: Pruningkriterien im Vergleich für Elkan und Simplified Elkan
für mnist784 mit 16 Clustern.
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Abbildung 6.23.: Pruningkriterien im Vergleich für Elkan und Simplified Elkan
für mnist784 mit 64 Clustern.
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Abbildung 6.24.: Pruningkriterien im Vergleich für Elkan und Simplified Elkan
für mnist784 mit 96 Clustern.
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Abbildung 6.25.: Pruningkriterien im Vergleich für Elkan und Simplified Elkan
für uscensus mit 16 Clustern.
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Abbildung 6.26.: Pruningkriterien im Vergleich für Elkan und Simplified Elkan
für uscensus mit 64 Clustern.
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Abbildung 6.27.: Pruningkriterien im Vergleich für Elkan und Simplified Elkan
für uscensus mit 96 Clustern.
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Abbildung 6.28.: Anzahl der nie aktualisierten unteren Schranken des regulären
Elkan für uscensus mit 96 Clustern.

lionen innerhalb der ersten Iteration initial gesetzt, da kein Pruning möglich
war. Weitere 3 Millionen werden innerhalb der zweiten Iteration gesetzt. Die
restlichen Iterationen bewirken nur geringe Änderungen an dieser Anzahl. Am
Ende verbleiben ungefähr 170 Millionen untere Schranken, die auf dem initialen
Wert von 0 verbleiben, beziehungsweise durch die Bewegung der Clusterzentren
in den negativen Bereich angepasst werden. Dies deckt sich mit der Verteilung
der Pruningleistung in Abbildung 6.27.

Die durch die gute Leistung von Pruningkriterium 2 nicht erfolgte Berech-
nung der unteren Schranke ist also ursächlich an der scheinbar schlechten
Pruningleistung der unteren Schranke. Eine weitere Verbesserung der Leis-
tung von Pruningkriterium 2 würde die Leistung der unteren Schranke weiter
verringern.

Für den praktischen Einsatz bedeutet das also, dass zur Berechnung der
Center-Center-Distanzen zusätzliche Distanzberechnungen und zur Prüfung
zusätzliche Verzweigungen erfolgen, nur um das Pruning von einem Pruningkri-
terium auf ein anderes zu verschieben. Insbesondere die größere Anzahl an
Verzweigungen hat einen negativen Einfluss auf die benötigte Realzeit. Ein
Test mit dem bereits zuvor betrachteten beispielhaften Clustering des uscensus
in 96 Cluster zeigt, dass der Simplified Elkan zwar 5 % mehr Instruktionen
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ausführt und 10 % mehr Verzweigungen überprüfen muss10, die Anzahl der
falsch vorhergesagten Verzweigungen durch die Sprungvorhersage sinkt aber
auf weniger als die Hälfte (Listing 6.5). Das führt zu einer besseren Auslastung
der CPU, da mehr Instruktionen pro Taktzyklus ausgeführt werden können.
Trotz der höheren Anzahl an ausgeführten Instruktionen kommt es dadurch zu
einer reduzierten Anzahl von Taktzyklen und somit reduzierten Realzeit.

1 Performance counter stats for 'target/kmeans_ELKAN_KMEANSPP_rolling Ascii ../
datasets/target/uscensus.txt 96 1':

2
3 [...]
4 847,758,833,256 cycles # 2.904 GHz (83.33%)
5 [...]
6 1,778,210,811,027 instructions # 2.10 insns per cycle
7 # 0.12 stalled cycles per insn (83.35%)
8 280,317,574,653 branches # 960.226 M/sec (83.33%)
9 3,697,319,986 branch-misses # 1.32% of all branches (83.33%)

10 [...]
11
12 Performance counter stats for 'target/kmeans_ELKAN_KMEANSPP_rolling_simplified

Ascii ../datasets/target/uscensus.txt 96 1':
13
14 [...]
15 783,348,635,053 cycles # 2.915 GHz (83.34%)
16 [...]
17 1,871,025,410,795 instructions # 2.39 insns per cycle
18 # 0.10 stalled cycles per insn (83.34%)
19 309,145,314,405 branches # 1150.346 M/sec (83.34%)
20 1,584,765,985 branch-misses # 0.51% of all branches (83.33%)
21 [...]

Listing 6.5: Sprungvorhersage im Vergleich zwischen Elkan und Simplified Elkan

Drake

Besonderes Merkmal des Drake ist die variable Anzahl von unteren Schranken.
Diese sollen im Verlauf des Algorithmus reduziert werden können, um Rechenzeit
einzusparen. In der Praxis funktioniert dies auf den verwendeten Datensätzen
mit den verwendeten Clusteranzahlen allerdings nicht. Wenn eine Anpassung der
Schrankenanzahl erfolgt, dann erfolgt diese nahezu immer innerhalb der ersten
10 % des Clusterings auf den minimalen Wert k

8
(Abbildung 6.29). Eine weitere

Häufung der Anpassungen befindet sich kurz vor Abschluss des Clusterings.
Am weitaus häufigsten erfolgt aber überhaupt keine Anpassung der Anzahl der
Schranken. Die Heatmap in Abbildung 6.30 zeigt, dass für den Großteil der

10Vermutlich bedingt durch die Prüfung in Zeile 4 von Algorithmus 3.1, die das Betreten
der Schleife über alle Clusterzentren für einen Datenpunkt vermeidet.
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Abbildung 6.29.: Verlauf des Anteils b
k der genutzten Schranken b im Drake als

Übersicht aller Datensätze, Clusteranzahlen und Seeds.
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Abbildung 6.30.: Heatmap des Anteils b
k der genutzten Schranken b im Drake als

Übersicht aller Datensätze, Clusteranzahlen und Seeds.
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Läufe der Startwert von k
4

nicht oder erst kurz vor Abschluss des Clusterings
verlassen wird.

In vielen Fällen verhindern einzelne Datenpunkte dadurch, dass für diese kein
Pruning möglich ist, eine Anpassung der Schrankenanzahl. Beispielhaft haben
rund 4,96 · 10−5 % der Datenpunkte für ein Clustering des uscensus-Datensatzes
in 96 Cluster11 bis zuletzt verhindert, dass die Anzahl der Schranken reduziert
werden konnte. Nach der Hälfte der Iterationen war für diesen konkreten
Clusteringlauf für rund 99 % der Datenpunkte eine Schranke ausreichend, um
ein Pruning zu ermöglichen.

Das andere Extrem tritt beim Clustering von niedrigdimensionalen Daten-
sätzen in viele Cluster, beispielhaft dem birch in 1024 Cluster12, auf. Nach
der zweiten Iteration war die maximale Anzahl benötigter Schranken für kei-
nen Datenpunkt größer als 10. Die Anzahl der Schranken wurde daher auf
1024
8

= 128 reduziert und verblieb für die verbleibenden 70 Iterationen auf
diesem Wert. 110 Schranken wurden unnötig weiterhin aktualisiert und es muss
Hauptspeicher für den maximalen Speicherbedarf von 256 initialen Schranken
bereitgestellt werden.

Dadurch, dass die Bestimmung der Anzahl der genutzten Schranken sehr
leichtgewichtig implementiert werden kann, kommt es für Clusteringläufe, in
denen keine Reduktion stattfinden kann, zu keiner relevanten Erhöhung der
benötigten Realzeit. Wenn eine Reduktion der Anzahl der Schranken stattfinden
kann, dann kann die für die Aktualisierung der Schranken benötigte Zeit
potentiell halbiert werden. Im Vergleich zu der benötigten Zeit für die restlichen
Berechnungen ist aber auch dies zu vernachlässigen.

Zusammenfassend lässt sich sagen, dass eine Anpassung der Anzahl der
unteren Schranken nicht schädlich ist, in der Praxis aber auch keine deutlich
spürbaren Vorteile bringt. Der Drake erreicht seine Leistung vielmehr durch
die im Vergleich zum Elkan reduzierte Anzahl von Schranken, nicht durch die
dynamische Anpassung der Anzahl dieser bereits reduzierten Anzahl.

11seed = 2
12seed = 1
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Annulus

Der Annulus ist bei unseren Tests der Algorithmus mit der größten Anzahl
an Varianten gewesen. Eine Stellschraube ist die mögliche Deaktivierung der
binären Suche. Dies ist nicht sinnvoll. Die Deaktivierung der binären Suche ist,
abgesehen von einzelnen Ausnahmen, nur für 16 Cluster und zum Clustering des
mnist784-Datensatzes schneller gewesen. Für 16 Cluster ist die Verbesserung
aber unter 5 % für eine ohnehin schon kleine Realzeit. Im Falle des mnist784
erreicht Pruningkriterium 3 generell nur eine geringe Leistung, der weitaus
größte Teil der Clusterzentren liegt auf dem Annulus. Nach der binären Suche
muss daher trotzdem über alle Clusterzentren iteriert werden, genau so, wie es
bei der linearen Suche der Fall wäre.

Die zweite annulusspezifische Stellschraube ist die Auswahl des Fixpunkts.
Die Auswahl des Fixpunkts als Schwerpunkt aller Datenpunkte benötigt mit
Ausnahme des colormoments-Datensatzes mehr Distanzberechnungen, als die
Auswahl des Fixpunkts im Ursprung. In Fällen, in denen die Auswahl der
benötigten Distanzberechnungen gesunken ist, beträgt der Unterschied weniger
als 2 %. Wenn sich der Schwerpunkt im Fixpunkt befindet, dann befinden sich
Datenpunkte und somit Clusterzentren in allen 4 Quadranten. Entsprechend
deckt der Annulus hier eine deutlich größere Fläche, in der sich potentiell
Clusterzentren befinden können, ab.

Den Fixpunkt hingegen als das komponentenweise Minimum aller Daten-
punkte zu wählen, bringt große Leistungsunterschiede sowohl in die positive als
auch in die negative Richtung. Beim Clustering von colormoments und covtype
konnten bis zu 25 % der Distanzberechnungen eingespart werden. Für diese
beiden Datensätze war der Fixpunkt im Minimum in keinem Fall schlechter als
der Fixpunkt im Ursprung. Beim colormoments befinden sich die Datenpunkte
relativ gleichmäßig um den Ursprung verteilt und alle Komponenten besitzen
eine ähnliche Standardabweichung. Dies entspricht der Situation bei der Aus-
wahl des Fixpunkts im Schwerpunkt aller Datenpunkte, die wie oben diskutiert,
eine schlechte Leistung bringt. Entsprechend verbessert sich die Leistung bei
Änderung der Position des Fixpunkts.

Für birch, house16h, mnist784 und s1 sind die Unterschiede zu vernachlässi-
gen, für viele Komponenten ist das Minimum hier nahe bei 0, sodass sich die
Position des Fixpunkts nur marginal ändert.
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Für den kddcup04, conflongdemo und uscensus wurden bis zu 20 % mehr
Distanzberechnungen benötigt. Die Leistungsabnahme beim uscensus ist hier
von besonderem Interesse. Nur zwei der 68 Komponenten haben ein Minimum
das nicht 0 ist. Komponente 3 bewegt sich ganzzahlig im Bereich von 1 bis 12.
70 % der Datensätze haben dort das Minimum 1. Komponente 50 bewegt sich mit
Lücken ganzzahlig im Bereich von 10 bis 52. 63 % der Datensätze haben dort das
Minimum 10. Es wäre daher anzunehmen, dass der Einfluss durch die geänderte
Position des Fixpunkts nur gering ist. Ursächlich an der deutlichen Abnahme
der Leistung ist die Verschiebung des Fixpunkts in der 50. Komponente. Diese
besitzt mit 11,56 die zweitgrößte Standardabweichung aller Komponenten und
ist für einen beispielhaften Lauf mit 96 Clustern eine der beiden Komponenten,
deren Standardabweichung größer als die durchschnittliche obere Schranke
(≈ 5,94) ist.

Die Leistung der einzelnen Pruningkriterien dieses beispielhaften Laufs ist in
Abbildung 6.31 für die zwei Positionen des Fixpunkts im Annulus und für den
Exponion dargestellt. Analog zu der Analyse des Elkan sind auf der vertikalen
Achse die Anzahl der eingesparten Distanzberechnungen gestapelt aufgetragen.
Da sowohl die untere Schranke als auch Pruningkriterium 2 global arbeiten,
erfasst unsere Implementierung ebenfalls die Anzahl der Distanzen, bei denen
beide Pruningkriterien ein Pruning erlauben (cc+ l). Die Werte für cc+ l, cc
und l entsprechen der Pruningleistung des Hamerly und sind in allen Varianten
identisch. Das zusätzliche Pruningkriterium des Annulus und des Exponion
kommt nur dann zum Einsatz, wenn diese nicht erfolgreichen prunen können.
Unabhängig von der Leistung dieses zusätzlichen Pruningkriteriums werden
die obere und untere Schranke identisch zum Hamerly aktualisiert. Es wird
deutlich, dass die größte Pruningleistung durch die unteren Schranken erreicht
wird. Diese dominieren daher die Form des Graphen. Abbildung 6.31d zeigt
die Leistung des jeweils zusätzlichen Pruningkriteriums daher noch einmal
im direkten Vergleich. Der Exponion erreicht die beste Leistung, gefolgt von
dem Fixpunkt im Ursprung. Der Fixpunkt als komponentenweises Minimum
erreicht, wie zuvor diskutiert, die schlechteste Leistung.

Der Grund in der Leistungsabnahme bei Verschiebung des Fixpunkts zum
Minimum aller Komponenten besteht darin, dass für einen Datenpunkt die
durch den Annulus abgedeckte Fläche beginnend an diesem Datenpunkt entlang
einer Dimension zunimmt je näher der Fixpunkt dem Wert des Datenpunkts in
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Abbildung 6.31.: Einfluss der Position des Fixpunkts auf die Pruningleistung für
einen Clusteringlauf auf dem uscensus-Datensatz mit 96 Clustern.
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Abbildung 6.32.: Ansteigende Fläche im Annulus je näher der Fixpunkt auf der
X-Achse dem Punkt p kommt.

dieser Dimension kommt. Umgekehrt nimmt die abgedeckte Fläche der anderen
Dimensionen ab. Abbildung 6.32 zeigt dies beispielhaft. Der kleinste Wert für
die horizontale Achse im Datensatz beträgt 10 (analog zur Komponente 50
des uscensus) und wird repräsentiert durch den Datenpunkt p. Je näher der
Fixpunkt on auf der horizontalen Achse dem Wert 10 kommt, desto größer ist
die durch den Annulus abgedeckte Fläche in horizontaler Richtung für Werte
beginnend bei 10.

Im konkreten Fall des uscensus-Datensatzes führt dies dazu, dass die abge-
deckte Fläche entlang einer Komponente mit großer Varianz und Spannweite
zunimmt, während die abgedeckte Fläche entlang der Komponenten mit kleiner
Varianz und Spannweite abnimmt. Insbesondere ist die Spannweite der meisten
Komponenten durch die obere Schranke nahezu vollständig abgedeckt, sodass
unabhängig von der Position des Fixpunkts der Großteil der Werte dieser
Komponenten auf dem Annulus liegt. Dies führt dazu, dass durch den Annulus
auf der entscheidenen Komponente 50 eine größere Fläche abgedeckt wird. Als
direkte Folge davon nimmt die Leistung von Pruningkriterium 3 ab.

Eine Verschiebung des Fixpunkts zur Verbesserung der Pruningleistung müss-
te also auch Varianz und Spannweite der einzelnen Dimensionen in Verbindung
mit der durchschnittlichen oberen Schranke beziehungsweise der Durchmesser
der natürlichen Cluster berücksichtigen, um konsistent eine verbesserte Leis-
tung zu erbringen. Der durchschnittliche Betrag der oberen Schranke und die
Durchmesser der natürlichen Cluster stehen a priori allerdings nicht zur Verfü-
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gung, sodass diese nicht in die Auswahl der Position des Fixpunkts einfließen
können. Eine statistische Standardisierung der Werte aller Dimensionen auf
den Mittelwert 0 mit Varianz 1 würde dieses Problem umgehen. Diese kommt
aber, obwohl die Standardisierung reversibel ist, zu anderen Ergebnissen. Ein
Clustering auf Basis standardisierter Werte ist somit kein exaktes Clustering
im Sinne von Definition 3.
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7
Fazit und Ausblick

Im Rahmen dieser Arbeit über exakte, durch Schranken beschleunigte k-means-
Clustering-Verfahren haben wir neben dem unbeschleunigten Lloyd-Algorithmus
sechs Algorithmen der k-means-Familie vergleichend untersucht.

Untersuchungen der k-means-Familie in bestehender Literatur vergleichen
die Leistung der unterschiedlichen Algorithmenvarianten anhand von extern
gemessenen Daten, wie beispielsweise die benötigte Real- oder CPU-Zeit und
dem benötigten Speicherverbrauch. Bei der Entwicklung neuer Algorithmen-
varianten wird zum Teil begründet, warum die Neuentwicklung besser als ein
bestehender Algorithmus sein soll, diese Verbesserung und Herangehensweise
aber nicht anhand von Messdaten innerhalb des Algorithmus, sondern nur
anhand der vorgenannten externen Messdaten belegt.

Ziel dieser Arbeit war es daher, systematisch zu untersuchen, welchen Einfluss
die einzelnen Eingabeparameter, wie beispielsweise die Größe und Beschaffenheit
des Datensatzes und die Anzahl der gewünschten Cluster, auf die Clustering-
leistung der unterschiedlichen Algorithmen und Algorithmenvarianten haben
und insbesondere, warum die einzelnen Algorithmenvarianten unterschiedlich
durch diese Parameter beeinflusst werden.

Unsere Untersuchung besteht dabei aus zwei Teilen. Im ersten Teil wur-
den sechs Algorithmen aus bestehender Literatur auf Gemeinsamkeiten und
Unterschiede untersucht, wiederverwendete Einzelkomponenten, die an der Be-
schleunigung beteiligt sind, extrahiert und die Funktionsweise auf theoretischer
Basis untersucht. Dabei wurden in den Algorithmen eine obere Schranke, drei
Arten von unteren Schranken und zwei Arten von ergänzenden Metadaten
identifiziert, die es mit Hilfe der Dreiecksungleichung erlauben, Aussagen über
die Distanzen zwischen Datenpunkten und Clusterzentren zu treffen. Mit Kom-
bination einer Art von unterer Schranke und einer Menge der ergänzenden
Metadaten lassen sich alle Pruningkriterien in den untersuchten Algorithmen
abbilden. Die ergänzenden Metadaten werden auf unterschiedliche Art und
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Weise in den Algorithmen genutzt. Algorithmen, die die gleichen Daten vor-
halten, unterscheiden sich teilweise nur in der Bedingung, die zur Prüfung des
möglichen Prunings genutzt wird. Die genaue Funktionsweise der einzelnen
Pruningkriterien und die Zusammensetzung zu einem vollständigen Algorith-
mus wurden im Detail vorgestellt. Der Ablauf des Zuweisungsschritts für einen
einzelnen Punkt wurde für alle Algorithmen mit Hilfe von Pseudocode in kon-
kreter Form dargestellt. Basis dieses Pseudocodes ist die Beschreibung des
Algorithmus innerhalb der Originalveröffentlichung, um sicherzustellen, dass
alle Pruningkriterien in der korrekten Reihenfolge überprüft werden. Ein erfolg-
reiches Pruning führt dazu, dass spätere Pruningkriterien nicht mehr überprüft
werden. Bei der Entwicklung dieses Pseudocodes wurde Wert darauf gelegt,
dass identische Abläufe und Bedingungen im Pseudocode in allen zutreffenden
Algorithmen in identischer Form umgesetzt wurden. Dabei stellt sich heraus,
dass sich das Pruning in den verschiedenen Algorithmen zum Teil nur durch die
Ergänzung einzelner Anweisungen unterscheidet. Details der Originalveröffent-
lichung, die im Sinne der Lesbarkeit nicht sinnvoll als Pseudocode abgebildet
werden konnten, wurden textuell erklärt.

Im zweiten Teil wurden die zuvor vorgestellten Algorithmen in C++ auf
Basis der STL ohne Verwendung externer Abhängigkeiten implementiert. Basis
der Implementierung ist der im ersten Teil entwickelte Pseudocode in Ver-
bindung mit den textuell beschriebenen Details. Der C++-Programmcode ist
möglichst nah am Pseudocode orientiert. Insbesondere die Struktur der Kon-
trollstrukturen findet sich identisch in Pseudocode und C++-Programmcode.
Falls die Beschreibung des Algorithmus in der Originalveröffentlichung Raum
für Interpretationen ließ wurden mehrere Varianten des Algorithmus imple-
mentiert. Auf gleiche Weise wurden mehrere Varianten implementiert, wenn
durch geringfügige Anpassungen, die den Ablauf nicht wesentlich verändern,
ein anderes Laufzeitverhalten zu erwarten war. Als letzte Form der Variante
wurden Techniken zur Verbesserung der Leistung, die den Ablauf des Zuwei-
sungsschritts nicht verändern, für alle Algorithmen implementiert, auch wenn
diese nicht Bestandteil der Originalveröffentlichung waren.

Der Exponion konnte nicht vollständig gemäß der Originalveröffentlichung
implementiert werden, der Einsatz der binären Suche fehlt. Die Funktionsweise
dieser binären Suche wurde zwar textuell beschrieben, es ist allerdings offen
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geblieben, wie die partielle Sortierung der Center-Center-Distanzen für die
binäre Suche in der geforderten Komplexitätsklasse erfolgen soll.

Durch diese strukturierte Herangehensweise wurde sichergestellt, dass kein
Algorithmus durch seine Implementierung gegenüber anderen Algorithmen
bevorteilt und die Ergebnisse dadurch verfälscht wurden.

Der so entwickelte Programmcode wurde an einer Vielzahl von Stellen um
die Erhebung von Messdaten erweitert. Eine nicht abschließende Aufzählung
dieser Messdaten inkludiert die Häufigkeit des Prunings mit Hilfe der einzel-
nen Pruningkriterien, die Anzahl der Distanzberechnungen und die benötigte
Realzeit pro Iteration. Diese Messdaten wurden für alle Algorithmenvarianten
für unterschiedliche Datensätze, Clusteranzahlen und Initialisierungen erhoben
und anschließend ausgewertet. Ein Vergleich der Algorithmenvarianten mit
Realzeit und der Anzahl der durchgeführten Distanzberechnungen als Leis-
tungsmerkmal konnte die Erkenntnisse bestehender Literatur im Wesentlichen
bestätigen. Für den Einsatz mit vielen Dimensionen empfiehlt sich die Verwen-
dung des Elkan, für den Einsatz in niedrigen Dimensionen die Verwendung
einer Hamerly-Variante. Der Yinyang erreicht mit zunehmender Anzahl an
Clustern eine bessere Leistung. Auffälligkeiten in diesem Vergleich der externen
Messdaten wurden als Basis für die Untersuchung der internen Messdaten
genutzt.

Als Vorbereitung für die Untersuchung der internen Messdaten haben wir die
Bewegungen der Clusterzentren in den verwendeten Datensätzen untersucht.
Da alle untersuchten Algorithmen exakte Algorithmen sind, bewegen sich die
Clusterzentren für alle Algorithmen auf identische Weise. Dabei konnten wir
feststellen, dass die maximale Bewegung einzelner Clusterzentren mit zuneh-
mender Anzahl von Clustern zunehmend stärker von der durchschnittlichen
Zentrenbewegung abweicht. Derartige Big Mover sorgen bei Algorithmen ohne
feingranulare untere Schranke für eine schlechte Pruningleistung.

Bei der abschließenden Betrachtung der internen Messdaten konnte über die
Analyse der Pruningleistung der einzelnen Pruningkriterien in Abhängigkeit
von der Iteration für den Elkan festgestellt werden, dass weniger mehr ist und
warum weniger mehr ist. Der Simplified Elkan, der im Vergleich zum Elkan
auf ein Pruningkriterium verzichtet, kann in der Praxis eine bessere Leistung
erzielen.
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Für den Drake stellt sich heraus, dass das „adaptive Tuning“ der Schranken-
anzahl in der Praxis auf den von uns verwendeten Datensätzen in der Regel
nicht sinnvoll funktioniert, aber auch keine Nachteile bietet.

Der Annulus erlaubte die Implementierung einer großen Anzahl von Varian-
ten. Für die Auswertung von besonderem Interesse und in der uns vorliegenden
Literatur bislang noch völlig unberücksichtigt war die Verschiebung des ver-
wendeten Fixpunkts. Eine Verschiebung innerhalb einer einzelnen Dimension
sorgt für bis zu 25 % Differenz in der Pruningleistung des Annulus. Wir haben
die Ursache für diesen großen Einfluss der Position des Fixpunkts auf die Pru-
ningleistung im Detail untersucht. Eine deutlich abweichende Beschaffenheit
dieser einzelnen Dimension im Vergleich zu allen Dimensionen führt dazu, dass
durch die Verschiebung des Fixpunkts weniger Clusterzentren gepruned werden
können.

In dieser Untersuchung der internen Messdaten nicht berücksichtigt wurden
Hamerly, Exponion und Yinyang. Für den Hamerly hat sich bereits bei dem
direkten Vergleich der Algorithmen herausgestellt, dass dieser als echte Teil-
menge des Annulus und Exponion in praktisch allen Fällen eine schlechtere
Leistung als selbige erbringt. Darüber hinaus treffen Leistungsmerkmale des
Hamerly identisch auf Annulus und Exponion zu. Im Falle des Exponion zeigte
der direkte Vergleich keine Auffälligkeiten, die als Startpunkt für die detaillierte
Untersuchung genutzt werden konnten. Die Leistung des Exponion entsprach
im Wesentlichen der Erwartung. In Bezug auf die Realzeit sorgte die fehlen-
de binäre Suche für eine schlechte Leistung und damit eine Verfälschung des
Ergebnisses. Der Yinyang erreichte bei dem direkten Vergleich der Algorith-
men mit zunehmenden k eine bessere relative Leistung. Die Auswertung der
internen Messdaten lieferte aber keine eindeutigen Ergebnisse für den Grund
dieser Leistungszunahme. Es konnte auch nicht klar festgestellt werden, ob die
Leistung des Yinyang zunimmt oder ob die Leistung der anderen Algorithmen
abnimmt.

Im Rahmen dieser Arbeit haben wir durch die systematische Herangehens-
weise in Bezug auf die Untersuchung von Algorithmen der k-means-Familie und
der daraus resultierenden praktischen Implementierung ein stabiles und faires
Grundgerüst zur Erfassung von Messdaten während des Clusterings geschaffen.
Dadurch konnten wir bestehende Erkenntnisse einerseits bestätigen und auf
der anderen Seite konnten wir die Gründe für das Verhalten der Algorithmen

114



anhand der erfassten Messdaten ermitteln und klar belegen. Für den Exponion
und den Yinyang sind noch Fragen offen geblieben. Diese sollten im Rahmen
zukünftiger Forschung auf Basis des von uns entwickelten Grundgerüsts, das
um die Erfassung weiterer Messdaten erweitert wird, geklärt werden.

Eine Einschränkung unserer Resultate ist die durch die Bearbeitungszeit be-
schränkte geringe Anzahl an unterschiedlichen Initialisierungen mit k-means++.
Ein Clustering aller Datensätze mit allen Algorithmenvarianten für die gewähl-
ten Clusteranzahlen benötigt für jeweils einen k-means++-Seed über 24 Stun-
den. Durch Fehler in der Implementierung, die erst durch die Auswertung
aufgefallen sind, und durch Erweiterung der erfassten Messdaten im Rahmen
der Auswertung ist mehrfach ein erneutes Clustering erforderlich gewesen, um
korrekte und konsistente Resultate zu gewährleisten. Auf gleiche Weise ist
die maximale Anzahl von Clustern mit 96 relativ gering gewählt. Für größere
Clusteranzahlen wäre bei den größeren Datensätzen für die schwergewichtigeren
Algorithmenvarianten mehr Hauptspeicher erforderlich gewesen. Das benötigte
finanzielle Budget für die genutzte Cloud-Hardware hätte sich dadurch ver-
doppelt. Eine Beurteilung, ob die beobachteten Trends, wie beispielsweise die
Leistungszunahme des Yinyang, sich für größere k fortsetzen, ist daher nicht
abschließend möglich gewesen.

Den Einfluss der Position des Fixpunkts auf die Pruningleistung des Annulus
konnten wir belegen und die Ursache dahinter ermitteln. Es konnte im Rahmen
dieser Arbeit aber kein Verfahren entwickelt werden, wie auf Basis des genutzten
Datensatzes die Position des Fixpunkts so gewählt werden kann, dass sich die
Leistung des Annulus gegenüber einer Position im Ursprung im Regelfall
verbessert.

Es wird deutlich, dass die Möglichkeiten der Beschleunigung von k-means-
Clustering durch exakte, schrankenbasierte Algorithmen noch nicht ausgeschöpft
sind. Diese Arbeit konnte aufgrund ihres Fokus und der zur Verfügung ste-
henden Ressourcen nicht alle Fragen abschließend klären, liefert aber einen
entscheidenden Beitrag für zukünftige Forschung in diesem Bereich.
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A
Datensätze

Eine besondere Schwierigkeit, die sich bei der Überprüfung der Resultate von
anderen Veröffentlichungen ergibt, ist, dass Testdaten und / oder die eingesetzen
Programme nicht zur Verfügung stehen. An dieser Stelle finden sich daher die
Quellen der verwendeten Datensätze und ihre kryptografischen Prüfsummen.
Es kann so leicht überprüft werden, ob der identische Datensatz vorliegt. Falls
eine Quelle zukünftig nicht mehr zur Verfügung steht, kann ein Datensatz mit
Hilfe der Prüfsumme möglicherweise auch über Magnet-Links für BitTorrent
oder das InterPlanetary File System (IPFS) bezogen werden.

birch

http://cs.joensuu.fi/sipu/datasets/ [FS18]

1 MD5 (birch1.txt) = 98a199d85ad4fc3cae4437008712a294
2 SHA1 (birch1.txt) = 486d2f0becdc6265f0c91cf26f52ef3ab0241a0f
3 SHA256 (birch1.txt) = 95230d302b2ffbe15de77f732af7002b037887
4 c30c19b1539999dedfe3587400
5 SHA512 (birch1.txt) = 9db82d02d0771c3c7b922f4320215f26a81d77
6 d5ea05a7e19ad8d0d0e832f11937f66186d0a7cc898e5813764522d45842
7 717b543d35f53aedfab014a3f083c8

colormoments

https://archive.ics.uci.edu/ml/datasets/corel+image+features [DG17]

1 MD5 (ColorMoments.asc) = 8c05f6e9e4a15baa07d61ab736dfdd07
2 SHA1 (ColorMoments.asc) = cdf1b9a8ba5bbb30d1954b7b104f84dbdf
3 0b7870
4 SHA256 (ColorMoments.asc) = 4353b76cd32d4e52617e287f05e0cf72
5 b6d3dff58542af55ec36a5300ecbf07d
6 SHA512 (ColorMoments.asc) = afbef12d829193003cfe57d74cb855d5
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7 76b0464bdfe78ea650bf57531454bf54c0752fe082be874a2899d8072b0e
8 013e2879ee2e58555989250a1c3ca15c3e8e

conflongdemo

http://cs.joensuu.fi/sipu/datasets/ [FS18]
1 MD5 (ConfLongDemo_JSI_164860.txt) = 4adae4725b198b7b2cf5b052
2 73821fa5
3 SHA1 (ConfLongDemo_JSI_164860.txt) = 5edd02bd3956fc23331e388
4 2c1c2ec7b996e02ce
5 SHA256 (ConfLongDemo_JSI_164860.txt) = 75628aef681b9cdcf1abc
6 08a392abf094d374e779b8d5566c4a8ebe064f52b37
7 SHA512 (ConfLongDemo_JSI_164860.txt) = cccc7147ddd1d0ed4d18e
8 6117ec257cfe11ec7561aaed81c05bb62485d2973f8afea3c704d21b6ed1
9 291a4d8dc324abae30b8f9a7e1d7e62a4a6a00642164213

covtype

http://archive.ics.uci.edu/ml/datasets/covertype [DG17]
1 MD5 (covtype.data) = 71df19898bd3e11db15ae0faf4159f2c
2 SHA1 (covtype.data) = 701f84a08505d5aea6870e48294585f6c7326a
3 f1
4 SHA256 (covtype.data) = 0a9371cef7c964b5475d6053cc3e0894a5aa
5 6f65ad1ed3ecb01c45aa96217945
6 SHA512 (covtype.data) = 4e77e1705c2040512ade4456bcb5422a2e00
7 b7a6ad2abc324a72a249d7a174a32a09368c76faee951ecd983871d17b0a
8 7e198654257d2eba4d542cad9bd1f2f7

house16h

http://funapp.cs.bilkent.edu.tr/DataSets/
1 MD5 (HH.dat) = c0d06d7e29bb86b12b5fac5748b92244
2 SHA1 (HH.dat) = 894893e21d257bcab4c6e5c123585af08b0a0551
3 SHA256 (HH.dat) = 8c85bdaf6bb3b096fe06cd50bbf9fbbd5513a179ad
4 b81465b73d0bebd4b845c8
5 SHA512 (HH.dat) = 6a0b89a2db1bf2f7cd014cc4c68944f31f3ac3ce0a
6 a7ce82d1d72bda9c9f50774e85f3ac2bea5af744137932dee2b031826971
7 8e5da07c12a6af038515a23f18
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kddcup04

http://cs.joensuu.fi/sipu/datasets/ [FS18]

1 MD5 (KDDCUP04Bio.txt) = 7042bef84dc482c8e1e40af1c8388eae
2 SHA1 (KDDCUP04Bio.txt) = d5ee968039e3859903517fc2b819b433a4f
3 76e1f
4 SHA256 (KDDCUP04Bio.txt) = 32e82eb6afba4072a3858b63503ae8ab0
5 34a90d24e03495a499d0ccb5b4f1dd3
6 SHA512 (KDDCUP04Bio.txt) = f8efa8cd8e85a1e7e21f63de000ebc0ae
7 bc52e3454c1e23cf20c32313cb326c5d4136af219877d5b3aa4a1bc1aa08
8 c6b5a1646228fe4e02fb2fe61030b189111

mnist784

http://yann.lecun.com/exdb/mnist/

1 MD5 (train -images -idx3-ubyte) = 6bbc9ace898e44ae57da46a32403
2 1adb
3 SHA1 (train -images -idx3-ubyte) = c3557c10f29b266e19b3eeee155
4 3c85e0ef4a8ea
5 SHA256 (train -images -idx3-ubyte) = ba891046e6505d7aadcbbe256
6 80a0738ad16aec93bde7f9b65e87a2fc25776db
7 SHA512 (train -images -idx3-ubyte) = 0c574eb011cd10a30a29887cb
8 7614a092e948881c3fa6a94b2c840413ba5363a99ff10274cb1790852e4b
9 f8fa2aa6c29d2bba3fa3b20b58ca8f381cf004fd478

s1

http://cs.joensuu.fi/sipu/datasets/ [FS18]

1 MD5 (s1.txt) = aadba37ab4b91b43320b6f1a44d61768
2 SHA1 (s1.txt) = a40ff718983669d42546366b241b981e86c19bbb
3 SHA256 (s1.txt) = d98ddffe6ad4ff67babf1aacd1b679e7b858c8c97b
4 e1e51c818fe5f4552664af
5 SHA512 (s1.txt) = 6a0f93fd661f3801623746757ee4cb842ab6f688db
6 ff2acdd7e3d240dbd20c792f01ab0adbe5226b7895634f08d286aead2792
7 113e6bf3b02763dac26da57454
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uscensus

http://archive.ics.uci.edu/ml/datasets/us+census+data+(1990) [DG17]

1 MD5 (USCensus1990.data.txt) = 13852241ffbd1bced75d4625e6ce9a
2 86
3 SHA1 (USCensus1990.data.txt) = ce03021c23ec87a90404ff772e522
4 ec5df248d5f
5 SHA256 (USCensus1990.data.txt) = 38e99f50855ddc03167b715b365
6 19ef40b77295ae4e85dfef0c6429ac79ed799
7 SHA512 (USCensus1990.data.txt) = a905c1a43d21c1330f26f3a4cab
8 c8971fadf6859a759eb9b3dca995028be83be21a28c866191311cfd4005f
9 6cada28d5e57693dc1f671071d209f1086305b1ee
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B
Inhalt der beigelegten CD-ROM

Auf der beigelegten CD-ROM finden sich, neben einer digitalen Version dieser
Arbeit, die in Kapitel 4 vorgestellten Datensätze, der Quelltext der Implemen-
tierung, die Rohdaten der Auswertung und die zur Auswertung verwendeten
Hilfsprogramme.

Die Quelldateien sind UTF-8-kodiert und haben Unix-Zeilenenden (LF).

Vergl_Untersuchung_von_exaktem_durch_Schr_beschl_
k_means_Clustering.pdf Dieses Dokument.

datasets.tar.gz gzip-komprimiertes Tar-Archiv der Datensätze.

impl/ Quelltext der Implementierung.

impl.tar.gz gzip-komprimiertes Tar-Archiv des impl/-Ordners.

results.tar.gz gzip-komprimiertes Tar-Archiv der Rohdaten der Auswertung.
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Eidesstattliche Erklärung

Hiermit versichere ich, dass die vorliegende Arbeit über Eine vergleichende
Untersuchung von exaktem, durch Schranken beschleunigtem k-means-Clustering
selbstständig verfasst worden ist, dass keine anderen Quellen und Hilfsmittel
als die angegebenen benutzt worden sind und dass die Stellen der Arbeit, die
anderen Werken – auch elektronischen Medien – dem Wortlaut oder Sinn nach
entnommen wurden, auf jeden Fall unter Angabe der Quelle als Entlehnung
kenntlich gemacht worden sind.

Tim Wolfgang Düsterhus, Münster, 9. Januar 2020

Ich erkläre mich mit einem Abgleich der Arbeit mit anderen Texten zwecks
Auffindung von Übereinstimmungen sowie mit einer zu diesem Zweck vorzu-
nehmenden Speicherung der Arbeit in eine Datenbank einverstanden.

Tim Wolfgang Düsterhus, Münster, 9. Januar 2020
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